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Abstract
This paper studies strategic experimentation between two players, with one player

initially better informed about the state of nature. They are otherwise symmetric,
and observe past experimentation decisions and outcomes. I construct an equilibrium
in which a mutual encouragement effect arises: as the public information becomes
discouraging, the informed player’s high effort continuously brings in good news, en-
couraging the uninformed player to experiment; in return, the uninformed player’s
experimentation pattern yields an increasing reward, encouraging the informed player
to experiment. Due to this effect, players’ total effort can increase over time, and the
uninformed player may grow increasingly optimistic, despite the discouraging public
information. Moreover, creating information asymmetry improves ex ante total welfare
when the informed player’s initial signal is sufficiently precise.

1 Introduction

Experimentation is an important mechanism through which agents discover new ideas and
learn their value, thereby promoting technological change, and driving economic growth.1 In

∗I am deeply indebted to Thomas Mariotti (thesis advisor), Johannes Hörner, and Jacques Crémer for
their support, encouragement, and guidance. I am also very grateful to Alessandro Bonatti, Daniel Garret,
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Alonso, Sarah Auster, Catherine Bobtcheff, Bruno Biais, Luc Bridet, Françoise Forges, Bertrand Gobillard,
Renato Gomes, Srihari Govindan, Christian Hellwig, Yukio Koriyama, Yves Le Yaouanq, Marco Ottaviani,
Harry Di Pei, Patrick Rey, Andrew Rhodes, Jean Tirole, Yuichi Yamamoto, and TSE seminar participants.
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1Endogenous technological change is a key driver of economic growth, as argued by endogenous growth

theory (Romer, 1990; Aghion and Howitt, 1992). On the role of experimentation in the discovery and
selection of new ideas, see Romer (1994, page 12), Nelson and Winter (1994, Chapter 11).
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many environments, agents learn both from their own and from others’ experimentations.
For example, farmers learn from their own and others’ experiences whether a new fertilizer
improves yield (Foster and Rosenzweig, 1995; Conley and Udry, 2010); physicians learn
through their own and others’ prescriptions the efficacy of a new drug after it is approved
by the FDA (Coleman, Katz and Menzel, 1957; Iyengar, Van den Bulte and Valente, 2011);
firms in a strategic alliance learn from one another whether their newly developed product
has a high demand.

In such environments, the information generated from experimentation is a public good.
A free-riding problem naturally arises: agents experiment less than they would do if they
acted cooperatively. The free-riding problem is well studied in symmetric information frame-
works, for instance, by Bolton and Harris (1999), and Keller, Rady and Cripps (2005).2

However, in many environments, initial information asymmetry is empirically relevant: some
agent (a well educated farmer, a specialist physician, the designer of a new product) initially
has better information about the value of experimentation.

This paper provides the first analysis of strategic experimentation in such contexts. It
investigates the following questions: Does initial asymmetric information mitigate or exacer-
bate the free-riding problem? How does it affect agents’ experimentation behavior? Does it
improve welfare to create information asymmetry in an otherwise symmetric environment?

The central contribution of this paper is to show that initial information asymmetry has
a qualitative impact on agents’ experimentation behavior: when the information generated
from experimentation becomes too discouraging, total experimentation effort can increase,
which does not happen without asymmetric information. This is due to the following mutual
encouragement effect: a better-informed player’s high effort continuously brings good news,
encouraging an uninformed player to experiment; in return, the uninformed player’s effort
pattern raises the reward for high experimentation effort, encouraging the better-informed
player to experiment. Moreover, this mutual encouragement effect leads to interesting welfare
implications.

To fully explore the impact of initial information asymmetry, this paper builds on the
two-player version of the exponential-bandit model (Keller, Rady and Cripps, 2005). At
each point in time, each player must divide a unit of resource between a safe project with
known payoffs and a risky project of unknown quality. Learning is conclusive: only good
risky projects deliver payoffs (breakthroughs), governed by a Poisson process. I add one
source of information asymmetry: at date 0, one player, called the informed player (he),
privately observes a binary noisy signal, and thus becomes either an optimistic type with a
higher posterior than the uninformed player’s (she), or a pessimistic type.

With asymmetric information, a public history carries two components of information.
One is the information generated from experimentation, depending only on the public history,
and thus is called “passive.” This component is represented by the informed player’s beliefs.
Given a public history, how he updates his beliefs is exogenous. The other is the private

2The free-riding problem is also well documented empirically; Foster and Rosenzweig (1995) find that
during the adoption of high-yielding seed varieties associated with the Green Revolution in India, farmers
do not fully incorporate the village returns to learning in making adoption decisions.
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information that the informed player leaks to the uninformed player, depending also on the
informed player’s strategies, and thus is called “strategic.” This component is represented
by the uninformed player’s belief about the informed player being the optimistic type, called
his reputation; given a public history, how the informed player’s reputation changes depends
on the additional information conveyed by his action, which is endogenously determined by
his equilibrium strategies.

Before a breakthrough occurs, the passive component of information reduces players’
beliefs about the risky project, thereby increasing their incentives to free-ride over time.
This component of information is the only one appearing in the symmetric information
model (Keller, Rady and Cripps, 2005). With information asymmetry, however, the strategic
component comes into play: the informed player maintaining high effort may signal his
optimism, thereby bringing good news to encourage the uninformed player to experiment. In
turn, the uninformed player’s response to his high effort may encourage the informed player
to experiment at beliefs he would not if he were alone. As a result, a mutual encouragement
effect can arise under asymmetric information, whereas only free-riding is present under
symmetric information.

The mutual encouragement effect can qualitatively change the dynamics of players’ effort.
Specifically, I construct a Markov perfect equilibrium (MPE) using these two components
of information as state variables. During a gradual revelation phase of the constructed
equilibrium, the pessimistic type mixes between mimicking the optimistic type’s high effort
and revealing himself. As long as he keeps mimicking, his reputation gradually increases.
This rising reputation (induced by the strategic component of information) counterbalances
the pessimism induced by the absence of a breakthrough (the passive component), and thus
encourages the uninformed player to increase her effort over time.3

This rising effort dynamics of the uninformed player occurs when the pessimistic type’s
belief lies in the region where both players would not experiment if his signal were public and
they acted non-cooperatively. Intuitively, during the gradual revelation phase, the pessimistic
type has to be indifferent between mimicking the optimistic type’s high effort so as to “trick”
the uninformed player into exerting effort, and revealing himself, thereby inducing both
players to stop experimentation. The marginal value of both players’ efforts to the pessimistic
type is dropping over time due to the absence of a breakthrough; therefore, for him to be
indifferent, the uninformed player’s effort has to increase over time. The uninformed player’s
rising effort can last until the pessimistic type’s belief hits the region where experimentation
stops, if his signal were public and both players acted cooperatively.4

The joint behavior pattern during the gradual revelation phase — the informed player
maintaining high effort and the uninformed player increasing her effort despite the absence
of a breakthrough — does not occur in any MPE of the symmetric information game,5 nor

3The uninformed player may even become increasingly optimistic about the risky project before a break-
through occurs, another novel qualitative impact of information asymmetry.

4In other words, the pessimistic type plays as if he acts cooperatively with positive probability.
5This is due to the strategic substitutability of current effort decisions: the absence of a breakthrough

tends to reduce a player’s incentive to experiment over time; if the other player does not reduce effort over
time, then this player’s best response is to reduce effort, using a cutoff strategy.
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is it predicted by other papers of the experimentation literature. Moreover, this behavioral
pattern admits an intuitive interpretation — leaders motivating followers through role mod-
eling: a leader articulates an appealing vision, which may or may not be reachable; however,
as the leader sees further and more accurately than his follower,6 his putting in long hours
during setbacks gradually convinces the follower of his optimism about the vision, and hence
motivates the follower to work harder. That leaders enhance followers’ commitment to their
visions through role modeling is a recurring theme in both modern leadership theories7 and
leadership guidelines in popular management books.8

The constructed MPE exists if the initial signal of the informed player is informative
enough, and the fraction of the pessimistic type is not too low. The former condition guar-
antees strict experimentation incentives of the optimistic type during the gradual revelation
phase (if he does not worry about his reputation), and the latter guarantees the existence
of this phase. If the prior belief is not too low, then the equilibrium path of the constructed
MPE is unique among the MPEs such that players play the symmetric MPE after informa-
tion becomes symmetric and that satisfies a criterion in the spirit of D1.9

The mutual encouragement effect leads to interesting welfare implications. Suppose the
initial signal is observed by a social planner (she), rather than the informed player. Would
she prefer to reveal the signal to both players, or to only one of them?10 This paper finds
that, if the planner cares about ex ante total welfare, and if the binary signal is informative
enough, then she prefers the latter. The intuition is as follows. The benefit of asymmetric
information, resulting from the mutual encouragement, is enjoyed by both the pessimistic
type and the uninformed player, whereas the cost, due to the uninformed player’s low effort
during the gradual revelation phase, is borne only by the optimistic type. If the initial signal
is informative enough, then being still optimistic during the gradual revelation phase, the
optimistic type learns little from the uninformed player’s experimentation, and therefore
suffers little from asymmetric information. As a result, asymmetric information improves
(ex ante) total welfare.

Drawing from this welfare implication, a policy maker aiming at promoting new tech-
nology adoption may find it desirable to target certain individuals first by giving them
relevant information or training. Companies promoting new experience goods might find it
profitable to target some consumers, say early adopters, or experts; indeed, pharmaceutical
companies spend huge amounts of money targeting marketing activities at “opinion leaders,”

6See for instance, page 2 of March and Weil (2009).
7For example, in charismatic leadership theory, transformational leadership theory (Bass and Bass, 2009;

Yukl, 2010), and in authentic leadership theory (Gardner et al., 2005; Avolio and Gardner, 2005).
8For instance, Yukl (2010) gives the following guidelines “for leaders seeking to inspire followers and

enhance their self-confidence and commitments to the mission”: articulate a clear and appealing vision;
explain how the vision can be attained; act confident and optimistic; express confidence in followers; use
dramatic, symbolic actions to emphasize key values; and lead by example (role modeling). See page 290–293.

9To be precise, the requirement on the informativeness of the informed player’s private signal for unique-
ness is stronger than the requirement for the existence of the constructed MPE.

10Revealing the signal to neither player is always dominated by revealing it to both (in terms of ex-ante
total welfare), assuming they play the symmetric MPE afterwards (due to the convexity of the continuation
value function associated with this MPE).
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for instance, by giving them detailed information about their new drugs, a process called
detailing (Nair, Manchanda and Bhatia, 2010).

The joint behavior pattern during the gradual revelation phase is also empirically rele-
vant. It predicts that experienced players experiment more than inexperienced players do
and that their experimentation behavior is less sensitive to unfavorable news11 or other play-
ers’ experimentation behavior. These predictions are in line with the empirical findings of
Bandiera and Rasul (2006), and Conley and Udry (2010). Bandiera and Rasul (2006) study
social networks and new crop adoption in Northern Mozambique. They find that experi-
enced farmers are more likely to adopt the new crop than inexperienced ones do and that
their adoption decisions are less sensitive to the adoption choices of others. Conley and Udry
(2010) investigate learning from one’s own and others’ experimentation in the diffusion of
a new fertilizer in Ghana, and find that a novice farmer’s responsiveness to news about
the productivity of fertilizer in his information neighborhood is much greater. While such
predictions are also compatible with models with myopic players in which experienced play-
ers have more precise information, the following prediction drawn from the joint behavior
pattern distinguishes the current model from the ones with myopic players: the experimen-
tation behavior of an experienced player with an inexperienced neighbor is less sensitive to
bad news than that of an experienced player with a similarly experienced neighbor.

Many empirical papers ignore the strategic component of information that players’ actions
can convey, even if they allow for information asymmetry. Consequently, when they find
players do not adjust experimentation decisions in response to neighbors’ news, they reject
the existence of learning through experimentation. The joint behavior pattern during the
gradual revelation phase implies that such rejection might be incorrect; or even when learning
through experimentation is not rejected, ignoring the strategic component of information
conveyed by players’ actions can lead to underestimating the effect of learning through
experimentation.

2 Literature Review

Strategic experimentation with multiple agents was first introduced by Bolton and Harris
(1999). In a two-armed Brownian bandit model, they analyze the interaction between two
forces — a free-riding effect and an encouragement effect (namely, inter-temporal efforts
among teammates are strategic complements), and characterize the unique symmetric MPE.
Keller, Rady and Cripps (2005) propose a tractable exponential bandit model to study the
strategic experimentation problem, and characterize both the unique symmetric MPE, and
other asymmetric MPEs; notably, the encouragement effect is absent in the MPEs of this
model.12 In both papers, players are symmetrically informed. In contrast, this paper finds
that, by introducing initial asymmetric information, a new mutual encouragement effect

11In this learning from perfect good news model, “no news” is unfavorable news.
12The encouragement effect does occur in MPEs with infinite switching. However, an MPE with infinite

switching fails to be a limit equilibrium of discrete-time games as the length of a period shrinks to 0.
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arises, leading to qualitatively different behavioral and belief dynamics.13

This paper is closely related to the recent experimentation literature exploring private
learning problems. Bonatti and Hörner (2011) study moral hazard in teams within an
exponential bandit setup, in which actions are hidden; they find that players procrastinate
(in the unique symmetric equilibrium) and that perfect monitoring on actions exacerbates
the procrastination problem even more (in the symmetric MPE). The current paper points
out one advantage of perfect monitoring that is absent with symmetrically informed players:
signaling by an informed player can push both players to work harder than under symmetric
information. Building on Bonatti and Hörner (2011), Guo and Roesler (2016) study a
collaboration problem with hidden experimentation actions but with public and irreversible
exit decisions. In their model, players may privately learn the quality of their joint project
over time if it is bad; as there are payoff externalities, a player who knows the project is
bad still stays in the game, delaying the abandonment of socially inefficient projects. Their
paper is the closest to my paper in that both papers study signaling in experimentation
problems; however signaling plays different roles in the two papers. In my paper, signaling is
through experimentation action and thus pushes the informed player to experiment beyond
his individual cutoff, whereas in their paper, signaling is through maintaining in the game
and the informed player free rides. Therefore, the joint behavior dynamics and welfare
implications are qualitatively different.

Private learning is also examined in environment where experimentation decisions are
observable but each player may privately learn the quality of risky projects over time. Hei-
dhues, Rady and Strack (2015) analyze a discrete-time version of the exponential bandit
model but with private payoffs. They find that if the common prior is sufficiently optimistic,
then there is a perfect Bayesian equilibrium that implements the cooperative solution. The
basic mechanism is that, if players commit not to reveal the breakthrough, then learning
slows down, and hence belief deteriorates sluggishly in case a player hasn’t experienced a
breakthrough; when the common prior is sufficiently optimistic, the players are indeed able
to commit, because if so, at the cooperative cutoff, players observing no breakthrough are
still more optimistic than the myopic cutoff belief and hence willing to experiment. A similar
mechanism is the driving force of Das (2015).14 In contrast, the mechanism in this paper
is through signaling, which can sustain experimentation even when the informed player’s
belief lies in the region where he is too pessimistic to experiment alone. The dynamics of
behavior and belief in their papers are qualitatively different from that in mine: in their
papers, players’ effort paths (on the equilibrium path) are of cutoff types; neither effort nor
belief can increase over time before they learn the quality of the risky project.

More broadly, that asymmetric information may improve total welfare also relates to the

13In Bolton and Harris (1999), higher future efforts by other players increase a player’s continuation
value, thereby encouraging the player to experiment to collect the continuation value. In my paper, a
higher reputation of the informed player increases both the uninformed player’s instantaneous payoff and
her continuation value, thereby encouraging her to experiment.

14 Das (2015) studies a competitive environment where efforts and payoffs are public but players may
privately learns the type of the risky project over time if it is good; only the player who experiences the first
public breakthrough receives a reward.
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leadership literature. Hermalin (1998) and Komai, Stegeman and Hermalin (2007) analyze a
static model of moral hazard in team, in which the leader (who knows the state of the world)
signals to the followers the value of their joint project by working hard, thereby partially
overcoming the free-riding problem. Different from them, this paper focuses on a dynamic
model, aiming at explaining the dynamic provision of (informational) public goods, which
cannot be analyzed in their static setup. Moreover, the welfare implications are different:
when the informed player knows the risky project is good but does not know it is bad,
creating information asymmetry improves welfare in my setup (with purely informational
externalities), whereas it is not always so in their setup (with purely payoff externalities).

The property that the uninformed player increases her effort over time despite her dete-
riorating belief resembles herding behavior studied by the herding literature (for instance,
Banerjee, 1992; Scharfstein and Stein, 1990), in the sense that the uninformed player herds
with the informed player. Different from the herding literature, the uninformed player in
this paper does not ignore her information; in fact, she uses all her information. The reason
she “herds” with the informed player is because the informed player’s action conveys enough
encouraging information to offset the discouraging public information.

Finally, the fact that the uninformed player benefits from her ignorance in equilibrium
bears a similarity with the advantage of using arm’s length relationships by a principal who
cannot commit in the contracting literature (Crémer, 1995), and the self-discipline function
of strategic ignorance to a time-inconsistent decision maker in the self control literature
(Carrillo and Mariotti, 2000). Crémer (1995) finds that, a principal unable to commit not
to renegotiate a contract is better off with an arm’s length relationship because it gives her
commitment power to punish an agent’s poor performance. Carrillo and Mariotti (2000)
find that a time-inconsistent decision maker may forgo free useful information, in fear that
her future selves would not be able to commit to the optimal consumption plan she makes
today, after observing the information. In the current paper, the uninformed player would
turn down the opportunity to learn the informed player’s information freely, knowing that
she would not commit to encouraging the informed player if she knows he is the pessimistic
type, dampening the experimentation incentives of the latter.

3 The Model

Time is continuous, indexed by t ∈ [0,∞). There are two players. Each player is endowed
with one unit of a divisible resource per unit of time, and divides it between a safe project
and a risky project. A safe project delivers a known return; the return of a risky project
depends on its quality θ, unknown and common to both players, with θ = g referring to
a good project, and θ = b to a bad one. Over any time interval [t, t + dt], if a player
allocates et ∈ [0, 1] resource to the risky project, and hence (1 − et) to the safe project, he
or she receives (1− et)sdt from the safe project, and a lump-sum payoff h with probability
etλ1{θ=g}dt from the risky project, with λ > 0. That is, a bad risky project delivers nothing
whereas a good risky project delivers Poisson payoffs, implying that one single arrival of the
lump-sum payoff perfectly reveals to a player his or her risky project being good; a lump-sum
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payoff is thus called a breakthrough. At any time t, players observe all past experimentation
decisions and experimentation outcomes.15 Both players prefer a good risky project to a safe
project, and a safe project to a bad risky project: λh > s > 0. They discount future payoffs
with a common discount rate r > 0.

Initially, players share a common prior q0, the probability with which each player believes
his or her risky project being good. At time 0, one player, called the informed player (player
I, he), receives signal s− with probability ρθ, and s+ with probability 1−ρθ. Signal s− is more
likely to occur to a bad risky project than to a good risky project: 1 ≥ ρb > ρg > 0. By Bayes’
rule, after receiving signal s−, I adjusts his belief downward to some q−0 , strictly lower than
the uninformed player’s (player U , she) posterior q0, thereby becoming a pessimistic type;
otherwise, he adjusts his belief upward to some q+

0 > q0, thereby becoming an optimistic type.
The parameters q0, ρb, and ρg are common knowledge.16 The initial information asymmetry
is the only divergence from the two-player version of the canonical exponential-bandit model
(Keller, Rady and Cripps, 2005)

Note that as in the canonical multi-player exponential-bandit model, there is only infor-
mational externality, because each player obtains payoffs only from his or her own projects,
independent of the other player’s actions conditional on the quality of the projects.

Remark. [A joint project interpretation] Because learning is conclusive and the experimen-
tation decisions and outcomes are public, experimentation ends once a breakthrough occurs.
And because there is only informational externality, the game essentially ends after the ar-
rival of the breakthrough; it then becomes a dominant strategy for a player to use the risky
project forever, bringing a discounted payoff λh/r. Note also that the player who receives the
first breakthrough enjoys an additional payoff h relative to the other. Therefore, the model
admits the following joint project interpretation: instead of working on two risky projects
of the same quality, the two players work on one joint risky project; a breakthrough occurs
to the risky project with the same probability as in our model, bringing a lump-sum payoff
λh/r to each, and an additional intrinsic satisfaction h to the first player who experiences the
breakthrough; the project is completed after the breakthrough, and hence the game ends.

3.1 The cooperative solution

If players act cooperatively to maximize their joint surplus, the informed player would
reveal his signal truthfully to the uninformed player. Therefore, from time 0 on, both players
would share a common posterior qt.

17 This posterior qt continuously decreases over time as
long as players experiment and a breakthrough does not arrive. Both players then adopt a

15Specifically, if we use (eIs, e
U
s ) to denote I’s and U ’s efforts taken at time s, then at time t before players’

actions, both players can observe the effort history before t, (eIs, e
U
s )s<t, and the experimentation outcome

history before t.
16Such initial information asymmetry arises for instance if I is an incumbent, U an entrant of the experi-

mentation game, if U is not sure exactly how much I has experimented before time 0.
17Message-sending is redundant here; the informed player’s stopping time is enough to communicate his

private information.
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cutoff strategy: experimenting if qt is higher than a cutoff q∗2 ∈ (0, 1), defined by

r(λq∗2h− s) + 2λq∗2(λh− s) = 0, (1)

and stopping otherwise. To understand equation (1), note that the first term on the left-
hand side is the flow marginal benefit of experimentation at the cooperative cutoff q∗2, and the
second term the continuation marginal benefit to the two players. Equation (1) says at the
optimum, the total marginal benefit of experimentation is 0 (a smooth pasting condition).

For future use, we also introduce the individually optimal solution, a similar cutoff strat-
egy with cutoff q∗1, where q∗1 satisfies a similar equation with equation (1) except that the
index 2 is replaced by 1. Since the continuation benefit to two players is twice as much as
that to a single player (at the same belief) whereas the flow net benefit is the same, we have
q∗2 < q∗1. That is, two players experimenting cooperatively acquire more information than
does a single player.18

4 Beliefs and Equilibrium Concept

Following experimentation papers with symmetric information (for instance, Bolton
and Harris, 1999; Keller, Rady and Cripps, 2005), we focus on Markov perfect equilibrium
(MPE). However, different from them, there is no single state variable that can be used
for the solution concept, because players do not share a common posterior. Observe that a
public history carries two components of information. The first is the information obtained
from the experimentation technology, depending only on the public history, independent of
players’ equilibrium strategies, hence is called “passive.” This component of information can
be represented by how the informed player updates his beliefs. The other is the informed
player’s private information leaked into public through his actions, depending also on his
equilibrium strategies and hence is called “strategic.” This component of information can be
represented by how the uninformed player updates her belief about the informed player being
an optimistic type. This strategic component is absent from a symmetric information setup,
and can potentially affect U ’s belief about the risky project in the opposite direction that the
passive component does, and hence cannot be represented by the passive component. Based
on this observation, we define state variables. Strategies, belief system, and equilibrium are
defined afterward.19

4.1 The state variables

The passive component—the background belief. Consider a naive outsider (he)
who knows the model setup except that he mistakenly thinks neither player observes the

18Following the terminology of Keller, Rady and Cripps (2005), the amount of information acquired is mea-
sured by the probability of learning the true state given the prior, whereas the intensity of experimentation
refers to the efforts of players.

19As we will see in Section 4.2, the belief system is also assumed to be Markov.
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Figure 1: True posteriors and the background belief

initial binary signal (of I’s); that is, he mistakenly thinks players have symmetric information.
Assume he starts with the same prior p0 ≡ q0 and observes the same public histories as our
players do. Denote his posterior as p, and call it the background belief.20

Of course, this background belief differs from I’s posterior. But if after a public history,
the naive outsider is told of I’s private signal, he then would adjust his belief to exactly I’s.
That is, after any public history, if the background belief is p, type s−’s posterior must be
qqq−(p), given by Bayes rule,

qqq−(p) =
pρg

pρg + (1− p)ρb
, (2)

and type s+’s must be qqq+(p), given by

qqq+(p) =
p(1− ρg)

p(1− ρg) + (1− p)(1− ρb)
. (3)

Figure 1 illustrates the relationships between the two posteriors qqq−(p), qqq+(p), and the back-
ground belief p, with the dotted line referring to qqq+ and the solid line to qqq−.

Equations (2) and (3) imply that the background belief p and the signals of the informed
player, s− and s+, are sufficient to track the informed player’s posteriors. To track U ’s belief
about the risky project, we still need the strategic component of information.

The strategic component—I’s reputation: the probability U assigns to I being
type s+, denoted by µ. Together with the background belief, I’s reputation determines U ’s
posterior about the risky project by

qqqU(p, µ) ≡ µqqq+(p) + (1− µ)qqq−(p), (4)

20A formal definition of the background belief is given in Appendix A.
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and hence directly affects U ’s flow experimentation payoff. As U ’s experimentation incentives
are affected by I’s effort strategies, which depend on I’s types, the weight that U puts on
each type is necessary to compute U ’s continuation experimentation payoffs. It is through
this second way that I’s reputation is indispensable for the equilibrium analysis.21 I does not
care about his reputation per se, but because U cares about it and will choose her strategy
accordingly, I cares about it indirectly.

In sum, the background belief, p, and I’s reputation, µ, are sufficient to represent the
two components of information and are thus used as state variables.

To reduce the burden of notation, denote the expected arrival rate (of breakthrough
under full effort) for type s+, type s−, and U at state (p, µ), as λI+(p), λI−(p), and λU(p, µ),
respectively, which are their posterior beliefs about the risky project multiplied by the arrival
rate of breakthroughs of a good risky project λ.

Remark. Singling out this non-strategic background belief from a public history is not
only technically convenient, but also empirically relevant. We interpret the outsider that
we introduce to define the background belief as an econometrician who mistakenly thinks
players are symmetrically informed. Therefore, the true asymmetric information model will
be misspecified as a symmetric information model by this econometrician. We will discuss
the empirical consequences of such a misspecification later.

4.2 Strategies and belief system

Players’ strategies are Markov in the state variables (p, µ). A pure strategy for U , type
s+, and type s− are denoted by eU , eI+, and eI− respectively, with eU(p, µ) referring to U ’s
effort level at state (p, µ). We are interested in equilibria in which both U and type s+ play
pure strategies, and type s− plays a pure strategy after his type is (truthfully) revealed. In
such MPEs, a mixed strategy of type s− is a mixture over his pure strategies, and can be
defined based on Aumann (1964).

The belief system is denoted by µ(s+|·), with µ(s+|eI , p, µ) being the probability that U
assigns to I being type s+ in state (p, µ), once she observes that I exerted effort eI . Here
we adapt the belief system to be Markov to suit our definition of MPE.

4.3 Equilibrium

Given a Markov strategy profile (eI−, eI+, eU) and a belief system µ(s+|·), the expected
average payoff to type sl, l ∈ {+,−}, at time 0 is

E

[∫ ∞
0

re−rt
((

1− eIlt
)
s+ eIlt λhθ

)
dt | eI−, eI+, eU , µ (s+|·)

]
,

21It is true that for a fixed background belief p, equation (4) defines a one-to-one mapping between qU

and µ; hence equivalently, we can use (p, qU ) as the state variables. However, this equivalence will not hold
if I has more than two types; qU will not be sufficient to calculate the weight that U assigns on each type.
In such circumstances, the relevant state variables will be the background belief, and the probability that U
assigns to each type (that is, her belief about I’s belief).
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which is equal to

E

[∫ ∞
0

re−rt
((

1− eIlt
)
s+ eIlt λ

Il(pt)h
)
dt | eI−, eI+, eU , µ (s+|·)

]
, (5)

by the Law of Iterated Expectations.
Similarly, the expected average payoff of player U at time 0 is

E

[∫ ∞
0

re−rt
((

1− eUt
)
s+ eUt λ

U(pt, µt)h
)
dt | eI−, eI+, eU , µ (s+|·)

]
.

A strategy profile (eI−, eI+, eU) and a belief system µ (s+|·) is an MPE if given the other
player’s strategy and the belief system, a player finds it optimal to play her equilibrium
strategy, and if the belief system is consistent.

4.4 The evolution of the state variables

Given an action path {(eIt , eUt )}t≥0 (on or off the equilibrium path), before a breakthrough
occurs, the background belief process {pt}t≥0 evolves according to

dpt = −pt(1− pt)(eIt + eUt )λdt, (6)

by Bayes’ rule.22

The evolution of the reputation processes depends on equilibrium prescription. Fix an
equilibrium (eI+, eI−, eU ;µ(s+|·)). We focus on the histories along which no breakthrough
has occurred and I has not revealed his type (on the equilibrium path).23

If the equilibrium is full pooling over [0, T ] for some T , then U ’s belief about the risky
project coincides with the background belief over [0, T ]; as a result, I’s reputation at back-
ground belief pt for any t ∈ (0, T ] is equal to

µµµo(pt) ≡ pt(1− ρg) + (1− pt)(1− ρb), (7)

where µµµo is called a full pooling path. Since p0 = q0, µµµo (q0) refers to I’s reputation at time 0.
As pt decreases over time, so does I’s reputation during full pooling; intuitively, since signal
s+ is more likely to occur to a good risky project, as U becomes more pessimistic about the
risky project being good, so does she about s+ having occurred.

22To see this, suppose at posterior pt, players take efforts (eIt , e
U
t ) during a dt duration of time. If a

breakthrough does not arrive during this interval, the players’ posterior at t+ dt, pt+dt, is

pt+dt =
pt(1− (eIt + eUt )λdt)

pt(1− (eIt + eUt )λdt) + (1− pt)

by Bayes rule. Using this equation, the belief change in this interval conditional on no breakthrough having
occurred, dpt ≡ pt+dt − pt, is given by equation (6).

23Once I’s type is revealed, then µ either stays at 0 or 1 on the equilibrium path; once a breakthrough
occurs, I’s reputation ceases to matter.
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Once the equilibrium diverges from full pooling, I’s reputation µt would differ from
µµµo(pt). Specifically, the equilibrium (eI+, eI−, eU ;µ(s+|·)) induces a distribution over public
histories, which defines a cumulative distribution function (CDF) over type s−’s stopping
times (of mimicking type s+) along the outcome path such that no breakthrough has occurred
and I has not revealed his type. Denote this CDF as Y , with Yt referring to the cumulative
probability that type s− has revealed himself before and at time t.24

By Bayes’ rule, I’s reputation µt satisfies

µt =
µµµo(pt)

µµµo(pt) + [1− µµµo(pt)] (1− Yt)
. (8)

Written in its differential form, the reputation process {µt}t≥0 evolves according to

dµt
µt(1− µt)

=
dµµµo(pt)

µµµo(pt) (1− µµµo (pt))
+

dYt
1− Yt

, (9)

where dYt
1−Yt denotes the probability that type s− reveals himself over dt interval of time,

conditional on no breakthrough having occurred and I having not revealed his type.

4.5 The continuation game under symmetric information

This paper focuses on the MPEs such that in the continuation game after I’s type is
revealed,25 players play the unique symmetric MPE, denoted as wS(·) with their common
posterior as the state variable. In this MPE, as characterized by Keller, Rady and Cripps
(2005), each player puts all the resource in the risky project when optimistic (when the
common posterior is in [qS, 1]), all the resource in the safe project when pessimistic (when
the common posterior is in [0, q∗1]), and an interior level of resource in both projects otherwise.
That is, in this MPE, players stop experimentation when their common posterior is below
the individual cutoff q∗1.

Due to the one-to-one relationships between players’ true posteriors and the background
belief, given in equations (2) and (3), the continuation equilibrium can be equivalently ex-
pressed using the background belief as the state variable. Figure 2 gives an illustration. In
the continuation equilibrium after type s−’s signal becomes public, illustrated by the dashed

24To be precise, a strategy profile eee ≡ (eI+, eI−, eU ) induces a probability distribution Pp0,eee over public
histories. Let Nt denote the number of breakthroughs that have occurred until time t. Let Hr

t denote the
set of time-t public histories along which I stops taking type s+’s prescribed action before a breakthrough
occurs, that is, Hr

t ≡ {(eIs, eUs , Ns)s<t : inf{s : eIs 6= eI+s } ≤ inf{s : Ns 6= 0}}. Let hnt denote the public
history that I has been taking type s+’s prescribed action and that a breakthrough has not occurred till t
(excluding t). Then the cumulative probability of separation at time t before I’s move, Yt−, is

Pp0,eee(H
t
r|Ht

r ∪ {htn}).

25“After I’s type is revealed” means after I’s type is truthfully revealed, that is, once information between
the two players is symmetric.
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curve in Figure 2, each player puts all the resource in the risky project when the background
belief p is greater than pS−, defined by qS = qqq−

(
pS−
)
, and all the resource in the safe project

when p is smaller than p∗−1 , defined by q∗1 = qqq−
(
p∗−1
)
.

Similarly, the solid curve in Figure 2 illustrates the continuation equilibrium after type
s+’s signal becomes public, with pS+ and p∗+1 defined likewise.

To avoid redundancy, whenever no confusion arises, we call p∗−1 type s−’s individual
cutoff (background belief), p∗−2 his cooperative cutoff, and pS− his switching cutoff. Type
s+’s cutoffs, p∗+1 , p∗+2 , and pS+, are similarly defined.

4.6 The odds ratio

A crucial factor driving the momentum of the mutual encouragement effect is the belief
gap between I’s two types. It is naturally measured by an odds ratio a ≡ (1−ρg)/ρg

(1−ρb)/ρb
, the ratio

of the odds of signal s+ occurring to a good risky project to the odds of it occurring to a
bad risky project. This is because, from equations (2) and (3), the odds ratio is also equal
to

a =
qqq+(p)

1− qqq+(p)
/

qqq−(p)

1− qqq−(p)
, (10)

the ratio of the odds that type s+’s risky project is good to the odds that type s−’s risky
project is good. In this sense, it measures both the informativeness of I’s private signal, and
also the belief gap between I’s two types.

The following assumption greatly eases our exposition of the mutual encouragement ef-
fect. Section 6 discusses what happens if this assumption does not hold.

Assumption 1. The odds ratio a is greater than or equal to aS ≡ qS

1−qS /
q∗2

1−q∗2
.

Under Assumption 1, when type s−’s belief is equal to the cooperative cutoff q∗2, type
s+’s would be greater than or equal to the switching cutoff qS (at the same public history).
It means the belief gap between I’s two types differs sufficiently, in such a way that after
the players with public information s− find it optimal to stop experimenting when playing
cooperatively, the players with public information s+ still experiment with full resource for
at least some time (when playing the symmetric MPE). The MPEs in Figure 2 satisfy this
assumption, because in this figure, p∗−2 > pS+, which is equivalent with qqq+

(
p∗−2
)
> qqq+

(
pS+
)
,

meaning that type s+’s posterior when type s−’s is at q∗2 (that is, qqq+
(
p∗−2
)
), is greater than

qS.

5 MPE with Gradual Revelation

We now construct the MPE of interest. We first highlight the main features of the
mutual encouragement effect, and then elaborate its implications for the equilibrium behavior
dynamics and belief dynamics. Detailed construction of the equilibrium is postponed to the
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eS(qqq−(p))

eS(qqq+(p))

p∗+1 pS−p∗−2pS+ p∗−1
p

e

0 1

1

Figure 2: The symmetric MPE as functions of the background belief

final subsection. Section 6 discusses the issue of equilibrium multiplicity. All equilibrium
descriptions are conditioned on the histories such that no breakthrough has occurred.

In the MPE of interest, after I’s type is revealed, the players play the symmetric MPE;
therefore, whenever we say type s− reveals himself, we mean that he plays this MPE strategy,
and immediately after this, U follows suit. This MPE has three phases.

1. When type s− is sufficiently optimistic — over background beliefs (pgr, 1), pgr to be
determined — the equilibrium involves full pooling, during which, both players allocate
all resources to the risky projects; as a result, I’s reputation gradually decreases over
time (along the full pooling path µµµo(pt)). The eroding reputation path is illustrated by
the dash-dot line over the interval (pgr, 1] in Figure 3; as time passes by, I’s reputation
descends along this line from right to left until p reaches pgr.

When the prior q0 is greater than pgr, this phase happens at the beginning of the game;
otherwise, the equilibrium path does not involve this phase.

2. When type s−’s belief is intermediate — over background beliefs (p∗−2 , pgr) — the equi-
librium involves gradual revelation, during which, type s+ still allocates all resources
to the risky project, whereas type s− mixes between mimicking type s+ and revealing
himself, such that as long as he keeps mimicking, his reputation gradually rises, along
a “gradual revelation path” (function) µ̂̂µ̂µ(pt). This rising reputation path is illustrated
by the solid curve in Figure 3; as time passes by, I’s reputation ascends along this line
from right to left.

If the prior q0 is greater than pgr, this phase happens immediately after the full pooling
phase; if q0 is between p∗−2 and pgr, this phase happens at the beginning of the game;
otherwise, the equilibrium path does not involve this phase.
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µµµo(p)

pgr

eI+ = eS+

eI− = 0
eU(p, 1) = eS+

eU(p, 0) = 0


eI+ = 1

eI− = 1

eU = 1

eI+ = 1
eI− : mixes 1 & eS


eI+ = 1

eI− : mixes 1 & eS

eU ∈ (0, 1)

µ̂̂µ̂µ(p)

p∗−2
p

µ

1− ρb

1− ρg

0 1

1

Full Pooling
Gradual

Revelation
Full

Separating

Figure 3: An MPE with gradual revelation

3. When type s− is sufficiently pessimistic — over background beliefs (0, p∗−2 ) — the
equilibrium involves full Separation, during which, type s+ plays the symmetric MPE
strategy under symmetric information s+, whereas type s− stops experimenting im-
mediately. Referring to Figure 3 again, if I stops experimentation, the state variables
jump on the line µ = 0 and then freeze there; otherwise, the state variables jump on
the line µ = 1 and move along it from right to left until experimentation stops.26

If the prior q0 is greater than p∗−2 , this phase happens immediately after the gradual
revelation phase; otherwise, the equilibrium path only involves this phase.

Call this equilibrium an “MPE with gradual revelation”. Figure 4 depicts two typical evo-
lution paths of the state variables in this MPE, conditional on I being type s+ and a break-
through having not arrived. When the prior q0 lies in the full pooling region (pgr, 1), say on
the closed circle of µµµo, as time goes by, the state variables move from right to left, along µµµo,
µ̂̂µ̂µ, and finally µ = 1, as represented by the solid arrowed curve. When the prior lies in the
gradual revelation region (p∗−2 , pgr), for instance at the open circle of µµµo, type s− reveals with
a positive probability such that upon non-revealing, the state variables immediately jump
up on the curve µ̂̂µ̂µ, and move in the same way as along the dotted arrowed line afterward.

Proposition 1 presents the main result of this section — the qualitative features of the
behavior dynamics and belief dynamics, with the quantitative ones postponed till the last
subsection.

26Of course, the state variables freeze up when the background belief reaches p∗+1 , below which, even type
s+ stops experimenting. We do not give a separate name to the equilibrium over [0, p∗+1 ] because it is trivial.
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µµµo(p)

pgr

µ̂̂µ̂µ(p)

pS−p∗−2
p

µ

1− ρb

1− ρg

0 1

1

Full Pooling
Gradual

Revelation
Full

Separating

p∗+1

t

Figure 4: An MPE with gradual revelation: two paths of the state variables

Note: both paths are conditioned on no breakthrough having occurred and the informed
player being type s+. The (blue) solid arrowed curve represents the path corresponding to
a high prior q0 (lying in the full pooling phase); the (pink) dashed arrowed curve represents
the path corresponding to a intermediate prior q0 (lying in the gradual revelation phase).
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Proposition 1. If the MPE with gradual revelation exists, then during the gradual revelation
phase, as long as a breakthrough has not arrived and type s− has not revealed himself, over
time,

1. U ’s effort gradually increases, when the background belief is between type s−’s cooper-
ative cutoff p∗−2 and his single-player cutoff p∗−1 ;

2. I’s reputation gradually rises;

3. if the informativeness of I’s initial signal is intermediate (that is, if the odds ratio a is
not too high but still satisfies Assumption 1), U ’s belief about the risky project is either
increasing or U-shaped.

The rising reputation is already presented in Figure 4; we now illustrate the other two
results. Figure 5 displays the uninformed player’s effort path corresponding to the blue
reputation path in Figure 4, by an arrowed curve. As in Proposition 1, U increases her effort
over time when the background belief is between p∗−1 and p∗−2 . We will discuss U ’s decreasing
effort part (over time) during the gradual revelation phase in Lemma 2 of Section 5.4.1; U ’s
decreasing effort part (over time) during the full separation phase coincides with that in the
symmetric MPE under public information s+ (the solid curve in Figure 2).

Figure 6 and 7 contrast two distinct paths of U ’s belief about the risky project; in both
figures, the horizontal axis represents type s−’s posterior, the dotted curve type s+’s, and
the solid curve the uninformed player’s. In Figure 6, which corresponds to a large odds ratio,
U ’s belief decreases over time before the full separation phase occurs, as under symmetric
information; but in Figure 7, which corresponds to an intermediate odds ratio, and hence
to the third result of Proposition 1, U ’s belief is U -shaped before the full separation phase
occurs.

Therefore, compared with the symmetric MPE under symmetric information, in which
players’ efforts and beliefs monotonically decrease over time, and they stop experimentation
at the single-player cutoff , two features of the current MPE stand in sharp contrast.

First, the uninformed player can increase effort, and become more optimistic about the
risky project over time, despite the deterioration of the background belief. She does so
because I’s high effort continually brings in good news, compensating for the absence of a
breakthrough, and encouraging her to experiment. Here thus lies the first layer of the mutual
encouragement effect.

Second, the pessimistic type experiments beyond the single-player cutoff, all the way till
the cooperative cutoff, with positive probability. He does so because the uninformed player
responds to his hard work by also working hard, indirectly inducing the pessimistic type to
internalize U ’s benefit from his effort, encouraging him to experiment at beliefs he would not
if he were alone or his signal were public. Thus, the first layer of the mutual encouragement
effect brings forth a second layer of the effect.

We therefore have identified the following mutual encouragement effect: I’s rising rep-
utation compensates the dropping background belief, encouraging U to experiment; U ’s
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Figure 5: The uninformed player’s effort

Note: U ’s effort path is conditioned on no breakthrough having occurred and I being
type s+. It increases over time when p is between p∗−1 and p∗−2 , that is, when type s−’s
belief is between the single-player cutoff and the cooperative cutoff.
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Figure 6: U ’s growing pessimism before full separation (a large odds ratio)
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t

Figure 7: U ’s growing optimism before full separation (an intermediate odds ratio)
Note: when the odds ratio is large (Figure 6), U ’s belief about the risky project qU is
decreasing over time as long as no breakthrough has occurred and I has not revealed
himself. Whereas when the odds ratio is intermediate (Figure 7), U ’s belief qU is first
decreasing over time and then increasing; in particular, it increases right before the full
separation phase occurs.
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increasing effort compensates the growing pessimism of type s−, encouraging him to exper-
iment (till the cooperative cutoff with positive probability). Driven by this effect, the joint
behavior pattern — the informed player keeps exerting high effort while the uninformed
player increases effort, despite the absence of a breakthrough — does not occur in any MPE
that is a limit MPE of the symmetric information discrete-time games, not just in the sym-
metric MPE.27 This pattern leads to qualitatively different empirical predictions, as we will
discuss in Section 8.

Remark (Divergent learning dynamics.). Note that if the gradual revelation phase starts at
a background belief higher than type s−’s individual cutoff (that is, pgr > p∗−1 ),28 then with
positive probability, type s− reveals himself at background beliefs higher than p∗−1 . After
this, both players play the symmetric MPE (see the dashed curve in Figure 2), meaning
that both players exert little effort as p moves close to p∗−1 , and hence learning is slow. On
the other hand, with positive probability, type s− continues experimenting with high effort
before experimentation stops; we interpret his behavior as a leader “leading by example”
(that is, acting as a role model, as discussed in the introduction).

Therefore, combining the joint project interpretation of our model (page 8), the MPE of
interest predicts that two identical groups working on the same joint projects and receiving
the same information can exhibit different learning dynamics. In one group in which the
informed player leads by example, learning is fast, and the joint project is completed or
abandoned in finite time; whereas in another group in which both players free rides, the
joint project is highly inertial, with little learning, and will not be abandoned in finite time.
That failing projects of strategic alliances are highly inertial are well documented in the
management literature (for instance Doz, 1996).

The above discussion highlights two ingredients for the mutual encouragement effect to
arise. First, it is able to counterbalance the deterioration of the background belief. This is
guaranteed by Assumption 1, which ensures that a perfect reputation brings in sufficiently
good news to encourage U to experiment (given type s+’s prescribed continuation strat-
egy). Second, it is needed to counterbalance the deterioration of the background belief; the
following assumption guarantees this:

Assumption 2. Signal s− is sufficiently likely to occur: ρg ≥ 1− s
(r+λ)h+λh−s .

Under this assumption, without good news channeled in from the strategic component,
the fraction of type s− would eventually become too high for U to continue experimenting
before full separation occurs; but then type s− would have no incentive to mimic type s+ and
would strictly prefer to separate from the latter before full separation occurs, which can’t
happen in equilibrium. To keep U experimenting at least till the full separation phase, the

27To be specific, it does not occur in any MPE that is a limit MPE of a discretization of the continuous-
time experimentation game. Hörner, Klein and Rady (2014) (in Lemma 1) show that in any perfect Bayesian
equilibrium (hence MPE) of such discrete time game, players do not experiment when their posterior is below
the single-player cutoff . Using this result, we can show that in any limit MPE, total effort cannot strictly
decrease in players’ posterior.

28If the fraction of type s− is high, then we have pgr > p∗−1 .
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strategic component of information has to kick in.29 We will give a meaning of the bound of
ρg in the last subsection Section 5.4.1.

With these two assumptions, the mutual encouragement effect can arise, so does the
constructed MPE:

Proposition 2. Under Assumption 1 and 2, an MPE with gradual revelation exists.

Before explaining the intuitions behind Proposition 1, we flesh out our equilibrium con-
struction.

(1) The Belief System (about I’s reputation µ). Low effort completely depletes reputation:
if I takes an effort strictly lower than type s+’s specified effort, he will be taken as type s−:

µ(s+|p, µ, eI < eI+(p, µ)) = 0; (11)

The belief updating rule for eI = eI+(p, µ) is pinned down by Bayes’ rule.

(2) Type s+’s strategy. Type s+ plays the symmetric MPE strategy under symmetric infor-
mation as long as his reputation is strictly positive, and a best response — the single-player
solution — otherwise. With Assumption 1, this implies he always experiments with full
resource before the full separation phase, hence consistent with our equilibrium prescription.

5.1 The rising reputation — the first layer of the mutual encour-
agement effect

During the gradual revelation phase, I’s rising reputation counterbalances the declining
background belief, maintaining U ’s indifference about experimentation, thereby incentivizing
her to take interior effort throughout the whole phase. To see this, consider the two main
elements that drive U ’s experimentation incentives.30

1. U ’s expectation about the arriving rate, λU (p, µ), defined in page 11. The higher her
expectation, the higher her flow marginal benefit of experimentation (MB), r(λUh−s),
and hence the more she is willing to experiment.

2. U ’s expectation about her ex post future values. Higher expected future value moti-
vates U to speed up experimentation so as to enjoy the future value earlier. That is,
the higher expected future value, the higher U ’s continuation MB.

29This is so if type s+’s effort is 1; due to the strategic substitutability of players’ current effort decisions,
reducing type s+’s effort (over time) can also keep U ’s experimentation incentives.

30I’s current effort also affects U ’s experimentation incentive, due to the strategic substitutability of
players’ current effort decisions, as in the symmetric information game. This element is absent here because
I’s current effort is 1 with probability 1.
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Suppose instead I’s reputation does not increase. Then as time passes, U expects her
flow MB to be falling, as her expected arriving rate, λU (p, µ̂), is falling with both the back-
ground belief and I’s reputation doing so. Moreover, as the background belief deteriorates,
U understands both her ex post future values are decreasing, and with I’s reputation also
dropping, so is her expected future value. Therefore, both elements decrease, undermining
U ’s experimentation incentive. Consequently, if at some point in time she is indifferent about
experimentation, she would strictly prefer not to experiment later.

As U is indifferent about experimentation during the gradual revelation phase, I’s rep-
utation must rise over time. Indeed, during this phase, I’s rising reputation keeps U from
becoming pessimistic too quickly about the risky project, and boosts her confidence about
having a brighter future (i.e., a higher ex post value). The incentive-enhancing effect of I’s
rising reputation (driven by the strategic force) exactly balances out the incentive-dampening
effect of the deteriorating background belief (driven by the passive force), maintaining U ’s
indifference about experimentation and thus her willingness to take the effort in Figure 5 —
in particular, to increase her effort when the background belief is between p∗−1 and p∗−2 .

Therefore, the first layer of the mutual encouragement effect motivates U to exert appro-
priate effort over time, so that the second layer of the mutual encouragement emerges.

5.2 U ’s increasing effort — the second layer of the mutual encour-
agement effect

When the pessimistic type’s belief is between his single-player cutoff p∗−1 , and his co-
operative cutoff p∗−2 , U ’s increasing effort compensates his growing pessimism, keeping him
indifferent between mimicking type s+ (by continuing experimenting) and revealing himself
(by stopping experimenting). As a result, he is both willing to experiment beyond his indi-
vidual cutoff, and to stop so that the action “continuing experimenting” indeed continually
carries encouraging news, propelling the first layer of the mutual encouragement effect.

Specifically, type s− faces two options. Since the background belief is below his single-
player cutoff p∗−1 , by revealing himself, he induces both players to stop experimentation; he
thereby receives the safe return. By continuing mimicking type s+ for a dt duration of time,
he receives an flow MB, r

(
λI− (p)h− s

)
dt, which is falling down with the absence of a

breakthrough, and a continuation benefit, the upward jump of his continuation value in case
a breakthrough arrives, λh− s, times its probability

(
1 + eU

)
λI− (p);31 Therefore, U ’s effort

eU , through uplifting the chance that type s−’s continuation value jumps upward, serves as
a reward to his hard work. For him to be indifferent about the two options, his total benefit
of continuing must match that of stopping; that is, U ’s effort must satisfy

eU (p, µ̂̂µ̂µ (p)) =
r(s− λI− (p)h)

λI− (p) (λh− s)
− 1, for p ∈ [p∗−2 ,min{p∗−1 , pgr}]. (12)

With the background belief deteriorating, U ’s effort increases over time. Intuitively, as type

31In case no breakthrough arrives, type s−’s continuation value stays at the safe return s and hence he
receives no continuation benefit after this event.
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s−’s MBs from both players’ efforts are decreasing and his own effort remains at 1, U ’s effort
— the reward — must increase so that his total net benefit of continuing mimicking to stay
at 0.

We thus call this region of the gradual revelation phase the “rewarding region”. Observe
from Figure 5 that eU = 0 at p = p∗−1 . This is because, p∗−1 being type s−’s individual
cutoff, U does not need to provide any extra reward for him to experiment. Note also that
eU = 1 at p = p∗−2 . This is because, p∗−2 being his cooperative cutoff, U needs to respond one
for one to type s−’s (reputation-building) effort, so that type s− indirectly internalizes the
social benefit of his effort at this point.32 The gradual revelation phase stops here because U
reaches the budget limit she can reward I’s hard working. U ’s effort in the other subregion
of the gradual revelation phase, (p∗−1 , pgr), is left to the final subsection.

Therefore, the second layer of the mutual encouragement effect incentivizes I to build up
his reputation, thereby bringing in enough encouraging information to propel the first layer.

5.3 U ’s growing optimism about the risky project

How much encouraging information should the informed player leaks to U , in order to
propel the first layer of the mutual encouragement effect? Lemma 1 gives an answer; U ’s
growing optimism in Proposition 1, follows immediately from the second case.

Lemma 1. There exists a threshold of the odds ratio ã ∈ (aS,∞) such that, during the full
pooling phase and the gradual revelation phase of the MPE constructed,

1. if a ∈ [ã,∞), U ’s expectation of the arrival rate, λU , strictly decreases over time;

2. if a ∈ [aS, ã), λU is U-shaped: it first decreases over time, and then after reaching some
point in the gradual revelation region, it begins to increase.

We are content to give an intuition for why near the end of the gradual revelation phase,
U becomes increasingly pessimistic over time if I’s initial signal is sufficiently informative
(a ∈ [ã,∞)), and increasingly optimistic if it is moderately informative (a ∈ [aS, ã)).

Recall that during the gradual revelation phase, U is indifferent between experimenting
and not experimenting, which requires her total marginal benefit of experimentation (MB)
to be 0. For this to happen, it must be that her flow MB changes in exactly the opposite
direction that her continuation MB changes.

U ’s flow MB is linear in the informed player’s posterior beliefs (both when I is of type s+

and when he is of type s−). It can be shown that right before full separation, U ’s continuation
MB can be approximated (up to first order) by her expected continuation value if I’s type
were public and both players played the symmetric MPE.33 Due to the convexity of player’s

32The symmetry between players (except asymmetrically informed) plays a crucial role here: in the co-
operative solution, the option value of U ’s experimentation to I is the same with the option value of I’s
experimentation to U ; at p∗−2 , type s− cares about the option value of U ’s experimentation to him, as if he
cares about the option value of his experimentation to U , and hence behave as if he plays cooperatively.

33That is, U ’s continuation MB can be approximated by µwS(qqq+ (p)) + (1−µ)wS(qqq− (p)). We will show
this in Appendix C.4.3.
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continuation value in the symmetric MPE (under symmetric information), U ’s continuation
MB can be taken as convex in I’s posterior beliefs (both when I is of type s+ and when he
is of type s−).

Therefore, a drop in q− widens the gap between the (ex post) posteriors q− and q+,
whereby it reduces U ’s flow MB relatively more than it reduces U ’s continuation MB. On
the contrary, a drop in q+ shrinks the gap between q− and q+, whereby it reduces U ’s flow
MB relatively less than it reduces U ’s continuation MB.34

When the odds ratio a is sufficiently large, q+ is close to 1 and hence barely decreases
over time (by Bayes rule) before full separation occurs and before a breakthrough arrives.
The impact of the dropping q+ on U ’s MBs is thus dominated by that of the dropping q−.
In this case, although U becomes increasingly pessimistic over time about the risky project,
she continues experimenting because she is increasingly convinced that the informed player
is optimistic, which raises her continuation value and motivates her to experiment.

When the odds ratio a is intermediate (greater and close to aS), U is willing to experiment
only if I is sufficiently likely to be type s+, that is, only if I’s reputation µ is close to 1.35 As
a result, the dropping q− ceases to matter because its impact is weighted by 1− µ, and the
the dropping q+ dominates. In this case, working for the future value becomes increasingly
unappealing; U nonetheless keeps experimenting, because her growing optimism enlivens
her. More intuitively, in this case, although U believes I is increasingly likely to be the
optimistic type, she understands that the optimistic type himself is getting pessimistic, which
disproportionately reduces her continuation MB relative to her flow MB. Fortunately, I’s
reputation rises fast, so fast that it overturns the deteriorating background belief, rebuilding
U ’s confidence about the risky project and hence her experimentation incentives.

Therefore, we have completed the (sketch of) proof of Proposition 1.

5.4 Detailed equilibrium construction

We now complete our equilibrium construction. Note that type s+’s strategy and the
belief system specified right above Section §5.1 significantly reduce the states over which
we need to define strategies, because strategies over the states that are unreachable by
any history, in or off equilibrium, does not matter and hence are preferably ignored. The
reachable states are

(p, 0) and (p,µµµo(p)), in full pooling phase;

(p, 0), (p,µµµo(p)), and (p, µ̂̂µ̂µ(p)), in gradual revelation phase;

(p, 0), (p,µµµo(p)), and (p, 1), in full separation phase.

(p,µµµo(p)) occurs either at date 0, or during the full pooling phase; (p, 0) occurs if I takes
an effort strictly lower than type s+’s equilibrium strategy; (p, 1) if I takes an effort strictly
higher than type s+’s, which is possible only during the full separation phase; and (p, µ̂̂µ̂µ(p)) on
the gradual revelation path. At the beginning of this section, we have defined all strategies

34 Appendix C.4.3 gives a detailed illustration.
35See the discussion of Lemma 3 in the last subsection for further explanation.
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over the above states, except during the gradual revelation phase, how exactly type s−
mixes between mimicking type s+ (by taking effort 1) and stopping mimicking (by playing
the symmetric MPE strategy under symmetric information s−), and how much effort U
exerts outside the rewarding region of this phase.

As we have mentioned (in Section 4.4), we will use the changing reputation to describe
the above mixed strategy of type s−. We first describe for a given gradual revelation path
µ̂̂µ̂µ, how type s− can implement the mixed strategy so that as long as he keeps mimicking
his reputation moves along µ̂̂µ̂µ in a simple and intuitive Markovian fashion. After this, we
derive the necessary and sufficient condition on µ̂̂µ̂µ and U ’s effort during the gradual revelation
phase, so that the MPE with gradual revelation is indeed an equilibrium.

First, at date-0 state (p,µµµo(p)) of the gradual revelation phase, type s− reveals with
probability YYY (p), such that the action of non-revealing pushes the state up on the curve µ̂̂µ̂µ,
with µ̂̂µ̂µ to be determined soon and YYY (p) by Bayes’ rule :

µ̂̂µ̂µ(p) =
µµµo(p)

µµµo(p) + [1− µµµo(p)] (1− YYY (p))
. (13)

We’ve illustrate this in Figure 3: if the state starts on the green dashed line in the gradual
revelation region, then type s− mixes between revealing and not revealing, such that the
state immediately jumps on the red line µ̂̂µ̂µ if he takes effort 1.36

Second, if the state is at (p, µ̂̂µ̂µ(p)), meaning that conditional on a breakthrough has not
arrived, type s−’s strategy has prescribed him to reveal with cumulative probability YYY (p),
then type s− mixes between revealing and not revealing at such an intensity, such that the
cumulative probability of separation follows YYY (p′), for p′ ∈ (p∗−2 , p). How does type s−
implement this strategy? Consider a cutoff stopping strategy that specifies a cutoff belief
below which type s− stops mimicking type s+. His mixed strategy is then a mixture over
these cutoff stopping strategies. To implement it, type s− at date 0 runs a randomization
device, according to whose realized value, chooses a cutoff belief to stop mimicking type s+.37

5.4.1 Necessary conditions for equilibrium construction

(1) U ’s effort function eU . At any state (p, µ̂̂µ̂µ(p)) on the gradual revelation path, type s−
faces two options: mimicking type s+, and not mimicking.

If he mimics, he will receive continuation value W I− (p, µ̂̂µ̂µ (p)), which satisfies the Hamil-
ton–Jacobi–Bellman (HJB) equation (the argument (p, µ̂̂µ̂µ (p)) is omitted whenever no confu-

36U ’s strategy is not specified here because what she does at the instant t = 0 does not affect her payoff.
37Formally, consider a randomization device which uniformly draws a random variable over [0, 1]; if r ∈

[0, 1] is realized, then type s− will choose to stop mimicking type s− at cutoff belief YYY −1(r), where the
superscript −1 refers to inverse of a function. Under this strategy, the cumulative probability of stopping
at belief p̃, the probability that p ≥ p̃, equals the probability that YYY −1(r) ≥ p̃ (by the definition of YYY −1),
which equals the probability that r ≤ YYY (p̃) (as YYY is strictly and continuously decreasing), namely, YYY (p̃) (as
the random variable r is uniformly distributed over [0, 1]).
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sion arises):

r
(
W I− − s

)
= eI+

[
r
(
λI− (p)h− s

)
− λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)]

+eU
[
−λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)] . (14)

Reputation being interpreted as an asset, this equation simply says type s−’s “required
return”, or his flow continuation value, of holding this asset for dt duration of time (the
left-hand side of equation (14) times dt), equals the sum of his flow MB times dt,

r
[
eI+
(
λI− (pt)h− s

)]
dt,

and the “capital gain” E[dW I− (pt, µ̂̂µ̂µ (pt)). The latter consists of two parts: an upward jump
of his continuation value in case a breakthrough arrives, (λh−W I−), weighted by its prob-
ability

(
eI+ + eU

)
λI− (pt) dt; and a change of his continuation value in case a breakthrough

does not arrive,
dW I−

dp
dpt = −dW

I−

dp

(
eI+ + eU

)
λpt (1− pt) dt,

weighted by the complementary probability. The continuation MB of experimentation is
the capital gain per unit of effort, the terms inside the square bracket of the second line of
equation (14).

If he does not mimic, then according to the belief updating rule (11), he will reveal his type,
and hence receives W I− (p, 0), which is equal to wS (qqq− (p)) by the equilibrium construction.
wS (qqq− (p)) satisfies a similar HJB equation with equation (14), except that eI+ and eU are
replaced by eS (qqq− (p)), the symmetric MPE effort.

Since type s− is indifferent between these two options during the gradual revelation phase,
we have W I− (p, µ̂̂µ̂µ (p)) = wS (qqq− (p)). This implies, first, his continuation MBs from each
players’ effort under the two options are the same, because the continuation MBs only depend
on continuation value functions (referring again to the terms inside the square bracket of
the second line of equation (14)). Second, his total MBs under the two options are also
the same, as the flow MBs depend only on his posterior. This means, whenever he is
indifferent about experimentation right after revealing himself, as what happens during the
gradual revelation phase but outside the rewarding region — (p∗−1 , pgr], he would also be
indifferent about experimentation if whatever effort he takes does not impair his reputation;
in such circumstances, mimicking type s+ costs nothing and hence type s− shouldn’t be
compensated by any reward for doing so. Therefore, a third implication follows: during
the gradual revelation phase but outside the rewarding region, type s−’s total benefit from
U ’s effort under the two options are the same . Since his MB from U ’s effort are also the
same, so should U ’s effort levels under both options. This means, U does not reward type
s−’s hardworking over (p∗−1 , pgr] of the gradual revelation phase, which is thus called the
non-responding region.
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The non-responding region does not alway exist, that is, pgr might be lower than p∗−1 . For a
given odds ratio, if the fraction of type s− is low, or ρb is low, then U is willing to experiment
even at low background beliefs, implying a short gradual revelation phase, or a low pgr. It
can be shown that for each odds ratio a satisfying Assumption 1, there is a threshold of
ρb above which, the non-responding region exists, and below which, it does not; below this
threshold, as ρb decreases, the rewarding region begins to shrink and as ρb reaches a lower
threshold, it ceases to exist. Assumption 2 is sufficient condition under which the gradual
revelation phase exists.

Lemma 2 summarizes our result, together with U ’s effort during the rewarding region.

Lemma 2. Assume the MPE with gradual revelation is an equilibrium. Then,

• Over the Rewarding Region (p∗−2 ,min{p∗−1 , pgr}] of the gradual revelation phase, U ’s
effort satisfies equation (12) along the gradual revelation path, and hence is strictly
increasing over time.

• Over the non-responding Region (min{p∗−1 , pgr}, pgr] (if nonempty) of the gradual reve-
lation phase, U ’s effort equals the symmetric MPE effort under public information s−,
and hence is strictly decreasing over time.

Referring to Figure 5 again, U ’s effort is decreasing over time over the non-responding re-
gion (p∗−1 , pgr),

38 and increasing over the rewarding region (p∗−2 , p∗−1 ). Although U ’s effort
is U -shaped (if the non-responding region exists), her reward, measured by the discrepancy
between her efforts before and after type s− reveals himself, (eU(p, µ̂̂µ̂µ) − eU(p, 0)), is mono-
tonically increasing over time: it stays at 0 when mimicking is costless, and begins to rise
when it becomes harder.

(2) Type s−’s revealing strategy µ̂̂µ̂µ. From Lemma 2, U ’s effort is interior and hence she
is indifferent about experimentation during the whole gradual revelation phase; we now
analyze what condition µ̂̂µ̂µ should satisfy to keep U ’s indifference.

In a dt time interval, three events can happen: a breakthrough does not arrive, a break-
through arrives, and I stops mimicking type s+, each with a probability depending on dp,
molding U ’s experimentation incentives. The first two events contribute to U ’s continuation
MB as they do to type s−’s. The third event happens with probability (1− µt) dYt

1−Yt (to U),

and when it happens, reduces U ’s continuation value by |WU (p, 0)−WU (p, µ̂̂µ̂µ) |. If U takes
effort e during a dt interval, then using equation (9) and dµt = µ̂̂µ̂µpdpt, this probability can
be expressed through the state variables:

(1− µ̂̂µ̂µ (pt))
dYt

1− Yt
=

(
φ (pt, µt)−

µ̂̂µ̂µp (pt)

µ̂̂µ̂µ (pt)

)
(eIt + e)pt(1− pt)λdt, (15)

38Note although U reduces her effort, and hence remains indifferent about experimentation in both this
non-responding region of the asymmetric information game and in the symmetric information benchmark, she
does so out of different reasons: in the former, she is indifferent because I’s rising reputation compensates
the absence of breakthrough , whereas in the latter, I’s dropping effort compensates the absence of a
breakthrough (due to the substitutability of players’ current effort decisions).
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where φ (pt, µt) ≡ (1−µt)(ρb−ρg)

µµµo(pt)(1−µµµo(pt)) .

U ’s continuation MB of experimentation, denoted as A(p, µ̂̂µ̂µ), sums up the weighted effects
of the three events:

A(p, µ̂̂µ̂µ) ≡ −λp (1− p) dW
U (p, µ̂̂µ̂µ)

dp
+ λU (p, µ̂̂µ̂µ)

(
λh−WU (p, µ̂̂µ̂µ)

)
+

(
φ (p, µ̂̂µ̂µ)− µ̂̂µ̂µp

µ̂̂µ̂µ

)
p(1− p)λ

(
WU (p, 0)−WU (p, µ̂̂µ̂µ)

)
. (16)

Her continuation value function WU(p, µ̂̂µ̂µ(p)) thus satisfies the HJB equation

r
(
WU (p, µ̂̂µ̂µ)− s

)
= max

e∈[0,1]
e
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A (p, µ̂̂µ̂µ)

]
+ A (p, µ̂̂µ̂µ) , (17)

where the left-hand side is U ’s flow net continuation value. Her indifference about experi-
mentation during the gradual revelation phase implies her total MB equal to 0:

r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A (p, µ̂̂µ̂µ) = 0. (18)

Equations (17) and (18) further imply that U ’s net continuation value equals her flow MB
experimentation divided by r:

WU (p, µ̂̂µ̂µ)− s = s− λU (p, µ̂̂µ̂µ)h. (19)

U ’s indifference condition (18) and her continuation value function (19) imply that the
gradual revelation path µ̂̂µ̂µ satisfies the following ODE:

µ̂̂µ̂µp = g(p, µ̂̂µ̂µ), p ∈ (p∗−2 , pgr), (20)

where the formula of g is given in Appendix C.2.3 due to its complexity and lack of direct
intuition.

The following lemma characterizes the gradual revelation path µ̂̂µ̂µ.

Lemma 3. Let the MPE with gradual revelation be an equilibrium. Then the gradual reve-
lation path µ̂̂µ̂µ is the unique solution to the first order ODE problem defined by equation (20),
with the initial value condition

µ̂̂µ̂µ =
s− λI− (p)h

W I+ (p, 1)− s+ λI+ (p)h− λI− (p)h
, p = p∗−2 , (21)

and the boundary pgr being the smallest p satisfying

µ̂̂µ̂µ (pgr) = µµµo(pgr), (22)
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The initial condition comes from the value matching condition of WU at p∗−2 :

s− λU (p, µ̂̂µ̂µ)h = µ̂̂µ̂µ
(
W I+ (p, 1)− s

)
, p = p∗−2 , (23)

where the left-hand side is U ’s equilibrium value (19) at p∗−2 whereas the right-hand side
U ’s expected value right before fully separating, the expectation of her ex post values after
revelation, positive only if I is type s+. Finally, since after the full pooling phase I’s repu-
tation µt must gradually rise above µµµo(pt) as long as type s− does not reveal, we must have,
first, the gradual revelation path is above the full pooling path at p∗−2 , µ̂̂µ̂µ(p∗−2 ) > µµµo(p∗−2 ).
Assumption 2 guarantees this: the bound in this assumption equals the lowest possible level
of reputation right before the gradual revelation phase ends, obtained when the optimistic
type knows the risky project is good; since the fraction of the optimistic type under full
pooling µµµo is always lower than ρg, we have µ̂̂µ̂µ(p∗−2 ) > µµµo(p∗−2 ) under Assumption 2.

Second, the right boundary of the gradual revelation phase, pgr, is the smallest background
belief at which the gradual revelation path µ̂̂µ̂µ and the full pooling path µµµo intersects.

Remark. The initial condition says, the value of µ̂̂µ̂µ right before the full separation phase
decreases in the the odds ratio a. Intuitively, the greater the odds ratio, the bigger gap
between the two types’ beliefs, and hence the higher her ex post continuation value in case I
is type s+, implying a higher incentive for U to experiment so as to collect this value earlier.

5.4.2 Sufficient conditions for equilibrium construction and existence

The necessary conditions provided in the previous subsection is also sufficient for the
MPE with gradual revelation to be an equilibrium:

Lemma 4. The MPE with gradual revelation is an equilibrium, if during gradual revelation,
the uninformed player’s effort is as in Lemma 2, and that type s−’s revealing intensity is
such that, the associated revealing path µ̂̂µ̂µ is a (unique) solution to the ODE problem defined
by (20), (21), and (22).

The existence of an MPE with gradual revelation, presented in Proposition 2, follows
from Lemma 4.

6 Multiplicity of Equilibria

6.1 Equilibrium refinement

Not surprisingly, the asymmetric information game has multiple MPEs, both due to the
strategic substitutability of current effort decisions in the experimentation game itself, and
the arbitrariness of assigning off-equilibrium beliefs in a signaling game. To select sensible
equilibria, we focus on MPEs that survive a criterion in the spirit of the D1 criterion, and
that players play the symmetric MPE under symmetric information, after the uninformed
player learns the true type of the informed player. We call the former restriction D1, and
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the latter restriction SMPE for simplicity. Moreover, we require equilibrium strategies to be
left continuous with respect to the background belief.

Even so, one source of multiplicity is unavoidable: when the optimistic type’s posterior
q+ is in (q∗1, q

S), the interior experimentation region of the symmetric MPE if his signal
were public, the uninformed player is willing to experiment right before full separation if the
informed player experiments too little.39 Then the optimistic type would have no incentive
to deviate to get a perfectly bad or perfectly good reputation, since in either case, he loses
the chance to free ride. Therefore, D1 does not have a bite here. Nonetheless, when the
belief gap between the two types is large enough, we must have full separation over back-
ground beliefs [p∗−2 − ε, p∗−2 ] for a small ε.40 The reason is that the above-mentioned pooling
requires the informed player to exert low effort for a long time,41 which would lead to a lower
continuation value to type s+ than the symmetric MPE under public information s+ does;
in such circumstances, type s+ strictly prefers to deviate to a high effort, since by D1, he
would get a perfectly good reputation for doing so. Using this result and D1, we can pin
down the equilibrium path when the prior q0 lies above p∗−2 :

Claim 1. There exists a threshold ā, such that if the odds ratio a is greater than ā and
the prior q0 is above p∗−2 , then the equilibrium path of any MPE satisfying D1 and SMPE
coincides with that of the MPE with gradual revelation constructed in Section 5.

The proof is in Appendix E.1. The intuition behind this result is that, if there is no
reputation concerns, then type s+ strictly prefers to experiment even if U ’s effort is 1 (recall
that current effort decisions are strategic substitutes), whereas type s− either strictly prefers
not to experiment (over the rewarding region) or is indifferent (over the non-responding
region) when U ’s effort coincides with the interior effort along (p, µ̂̂µ̂µ). Therefore, the reason
that type s+ might choose effort lower than 1 in some MPE must be that effort 1 leads
to a reputation under which, in the future, either U free-rides or he himself is required
to free-ride. To rule out such possibilities, for a given MPE, we first identify the smallest
p (above p∗−2 ) around which its type s+’s equilibrium effort differ from that of the MPE
constructed in Section 5; we then show that the set of reputation making type s+ strictly
benefits from deviating to effort 1 is strictly larger than the set of reputation making type
s− weakly benefits from such a deviation. Therefore, by D1, whenever I deviates to effort
1 over [p, p + dp], he should receive a perfect reputation. But then type s+ indeed has a
profitable deviation; hence the MPE under consideration cannot survive the D1 criterion.
This reasoning implies that type s+’s equilibrium effort must be 1 for all p > p∗−2 , in any
MPE satisfying D1 and SMPE.

Assumption 1 is not enough for the result in Claim 1 to hold because although the
optimistic type has strict incentives to experiment at all p’s that are greater than p∗−2 , he

39The uninformed player is willing to experiment alone as long as her continuation value is higher than
the safe return. Hence if µ > 0 and the duration of time she experiments alone before full separation is not
too long, her continuation value will indeed be higher than s.

40Recall that p∗−2 is the boundary between the full separation phase and the gradual revelation phase of
the MPE with gradual revelation.

41Otherwise, type s− would strictly prefer to separate.
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might still exert low effort, in fear that if the uninformed player learns that he is the optimistic
type, the uninformed player would exert less effort in the future.42

6.2 MPEs without Assumption 1

If Assumption 1 does not hold, then there are multiple MPEs satisfying D1, SMPE,
and close to the MPE with gradual revelation constructed in Section 5. Typically, such an
MPE has an additional pooling phase, which occurs between its gradual revelation phase
and its full separation phase.43 That is, an MPE has four phases: full pooling when p is
high; gradual revelation when p is moderately high; pooling when p is moderately low;44 and
full separation when p is low. When Assumption 1 does not hold, a sufficient condition for
U ’s rising effort pattern in Proposition 1 to occur in some MPE is that the odds ratio a is

greater than qS

1−qS /
q∗1

1−q∗1
. When the odds ratio is too small, then such rising effort patterns

(over time) do not occur in MPEs close to the MPE with gradual revelation constructed in
Section 5.45

An MPE with only pooling and full separation phases always exist. We focus on MPEs
with gradual revelation because it delivers new insights, and qualitatively different behavior
and belief dynamics. Moreover, the MPE with a gradual revelation phase during which
the optimistic type’s effort is 1 corresponds to the extreme such that, the informed player’s
private information is revealed as quickly as possible (in terms of the background belief),
and the uninformed player’s experimentation incentive is maintained by such information.
Pooling equilibria represent another extreme, in which the informed player’s private informa-

42The pooling discussed above Claim 1, that is, pooling at background beliefs below p∗−2 , is unappealing
for two reasons. First, the ex-post total welfare of such a pooling MPE over background beliefs [0, p∗−2 ]
is lower than the ex-post total welfare of some MPE in which full separation occurs over [0, p∗−2 ]. This
is because in case I holds signal s−, experimenting at p < p∗−2 generates a lower total welfare than not
experimenting, as p∗−2 is the cooperative cutoff; in case I holds signal s+, type s+ can be prescribed to play
his effort on the pooling path of the pooling MPE, and U can be prescribed to weakly higher effort than her
effort on the pooling path of the pooling MPE. Second, there is nothing new in the pooling mechanism: U ’s
experimentation incentives are sustained by I’s low effort as her posterior deteriorates over time, which is
exactly the same as in an asymmetric MPE of the symmetric information game.

If we impose full separation for background beliefs below p∗−2 , then Assumption 1 would be sufficient for
the result in Claim 1 to hold. A sufficient condition for full separation to occur at background beliefs below
p∗−2 is eU (p, µ) ≤ eU (p, 1), which restricts the punishment role of a perfectly good reputation.

43I still call the region where both players stop experimenting ([0, p∗+1 ]) full separation, because type s+
could exert a positive effort at t = 0 (right after learning his type) and reveal his type. Such an action is
costless in continuous time.

44This new pooling phase occurs over a subset of [max{p∗−2 , p∗+1 }, pS+). When Assumption 1 does not
hold, a gradual revelation phase cannot lasts till max{p∗−2 , p∗+1 }. This is because, for gradual revelation to
occur, the uninformed player’s effort must be interior and strictly lower than the optimistic type’s effort; the
former implies that both U ’s effort and the optimistic type’s are lower than the symmetric MPE effort under
symmetric information s+, and hence the optimistic type has strict incentive to experiment. The MPE (with
the above-mentioned feature) cannot satisfies D1, because the optimistic type has a higher incentive than
the pessimistic type to deviate and show that he is indeed a optimistic type, so as to induce both players to
work harder.

45That is, the rewarding region disappears.
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tion is withhold as late as possible, and the uninformed player’s experimentation incentive is
maintained by lowering the informed player’s effort (over time). Between these two extreme,
we can construct a continuum of hybrid MPEs.46

7 Welfare Analysis

We now examine the welfare impact of asymmetric information. We compare players’
ex ante total payoff at the initial background belief p0 in the MPE with gradual revela-
tion constructed in Section §5, shortened as the “ex ante total welfare under asymmetric
information”:47

WU(p0,µµµ
o(p0)) + µµµo(p0)W I+(p0,µµµ

o(p0)) + (1− µµµo(p0))W I−(p0,µµµ
o(p0)), (24)

and that in the symmetric MPE of the symmetric information game, shortened as the “ex
ante total welfare under symmetric information”:48

2µµµo(p0)wS(qqq+(p0)) + 2(1− µµµo(p0))wS(qqq−(p0)). (25)

Denote ∆W (p0) the discrepancy between these two welfares, that is, expression (24)
minus expression (25). We will say:

Definition 1. Asymmetric information

• improves ex ante total welfare at p0 if and only if ∆W (p0) > 0;

• deteriorates ex ante total welfare at p0 if and only if ∆W (p0) < 0.

Asymmetric information generates a benefit because, due to the mutual encouragement
effect, in case I received signal s−, players experiment more than they would do in the
symmetric information benchmark. Asymmetric information may however, incur a cost; in
case I received signal s+, then during the gradual revelation phase, U experiments less than in
the symmetric information benchmark, resulting in an ex post total welfare loss. This implies,
if ρb is so low, and hence the fraction of type s− is so small, that the gradual revelation phase
of the MPE with gradual revelation in Section 5 disappears,49 then asymmetric information
does not incur any cost. As a result, asymmetric information improves ex post individual
welfares, and hence it improves ex ante total welfare. In the sequel we focus on the nontrivial
case such that the gradual revelation phase exists. Proposition 3 presents the main welfare
result. Since asymmetric information does not affect welfare over the full separation region,
we only present the welfare results over the gradual revelation region and the full pooling
region, (p∗−2 , 1).

46“Hybrid” is in the sense that the uninformed player’s experimentation incentives are maintained by
gradual revelation and lowering the informed player’s effort at the same time.

47Note that the initial background belief p0 equals the initial common prior q0.
48That is, it is the expected total welfare at the initial background belief, before player I’s signal is realized

and becomes public.
49Assumption 2 in Proposition 2 is only a sufficient condition for the gradual revelation phase to exist.

See the discussion right above Lemma 2 for a sufficient and necessary condition on ρb.
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Proposition 3. Under Assumption 2,

• if a ∈ [1 + 2λ
r
,∞), then asymmetric information improves ex ante total welfare over

the gradual revelation region and the full pooling region (p∗−2 , 1).

• if a ∈ [aS, 1 + 2λ
r
), then asymmetric information deteriorates ex ante total welfare over

some p0’s.

Interested readers can refer to Proposition 4 presented at the end of this section for a
detailed welfare characterization when a ∈ [aS, 1 + 2λ

r
).

The main message that Proposition 3 delivers is that, under Assumption 1 and 2, asym-
metric information improves ex ante total welfare (except over the full separation region)
if and only if I’s initial signal is sufficiently informative, or equivalently, if and only if the
degree of asymmetric information is large enough. We now explain its intuition. We will
give a meaning to the threshold 1 + 2λ

r
afterward.

Compared with symmetric information, in the asymmetric information game, type s+

exerts the same level of effort, type s− more effort; U exerts less effort than in the symmetric
MPE when s+ is public, and more when s− is public. Therefore, at the interim stage (right
after I learns his type),

(i) type s+ suffers from asymmetric information because he does not enjoy as much infor-
mational externality as he does in the symmetric benchmark due to U ’s lower effort, except
when ρb = 1. If ρb = 1 (or, a is infinity), then type s+ knows the risky project is good and
hence there is nothing for him to learn.

(ii) Type s− does not suffer or benefit from asymmetric information in the gradual revelation
phase, and benefits from it in the full pooling phase due to U ’s harder work than in the
symmetric benchmark.

(iii) U benefits from asymmetric information. Conditional on a breakthrough has not ar-
rived and type s− has not revealed himself, U has the option of matching her effort level to
I’s. Doing so, in case I holds signal s+, both players would experiment as they would do
in the symmetric information setup with s+ public, whereby U achieves the same ex post
continuation value as under symmetric information. In case I holds signal s−, both players
would experiment more than they would do in the symmetric information setup with s− pub-
lic; as experimentation is desirable for the two players over the gradual revelation region, and
they equally share the workload, U achieves a strictly greater continuation value than under
symmetric information. Therefore, this effort-matching option (in the MPE constructed)
guarantees her a higher interim value than does the symmetric benchmark. If she does not
take this option in the MPE constructed, it must be that she is better off in this MPE, and
hence better off than under symmetric information.

Type s+’s loss from asymmetric information is decreasing in the odds ratio, whereas the
two players’ gain in case I received signal s− is increasing in it. Intuitively, first, the greater
the belief difference, the more optimistic type s+ is during the gradual revelation region,
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and hence the less type s+ needs to learn from U ’s experimentation outcome, consequently
the smaller loss type s− suffers from asymmetric information.50 Second, the greater the
belief difference, the less type s− needs to reveal to compensate player U during the grad-
ual revelation region, and hence the higher probability that the two players still continue
experimenting in the future, implying a greater gain to them in case I holds signal s− .

In one extreme when the odds ratio a is infinity (occurring if ρb = 1), type s+ does not
suffer any loss from asymmetric information whereas type s− and U strictly benefit from it;
asymmetric information thus improves ex ante total welfare unambiguously. In the other
extreme when the odds ratio a equals aS, U is willing to experiment at the end of the gradual
revelation phase p∗−2 only if she believes her teammate is type s+ for sure, or, µ̂̂µ̂µ = 1 at p∗−2 ;
as a result, type s+’s loss dominates, and asymmetric information deteriorates ex ante total
welfare (at least for background belief close to p∗−2 ). By continuity and the monotonicity of
the ex post gains and losses, there is a threshold of the odds ratio, above which asymmetric
information improves ex ante total welfare universally and below which it does not.

We are thus done with the main message. What is the meaning of the threshold 1 + 2λ
r
?

It turns out, it equals qM

1−qM /
q∗2

1−q∗2
, where qM is a player’s myopic cutoff (in true posterior).

That is, it is the odds ratio under which, when type s−’s posterior is at his cooperative cutoff
q∗2 (hence the end of the gradual revelation phase), type s+’s is at exactly his myopic cutoff
qM . We now give an intuition why this is so, for interested readers.

First, the myopic cutoff qM is special not only because it is the optimal cutoff for a myopic
player, but also because it is the threshold (in true posterior) above which, a player’s flow
continuation value r(wS − s) under the symmetric information benchmark is greater than
the social continuation MB of effort, and below which it is smaller. To see this, consider a
player’s HJB equation around qM under the symmetric information benchmark (with state
variable being the common posterior q), as both players take effort 1 around qM , we have

r(ws − s)︸ ︷︷ ︸
flow continuation value

= r(λqh− s)︸ ︷︷ ︸
flow MB

+2 ∗ continuation MB.

Since there are two symmetric players playing the symmetric MPE, twice the continuation
MB to one player is also the social continuation MB of effort.

The above HJB equation says a player’s flow continuation value in the symmetric in-
formation benchmark is greater than the social continuation MB if and only if his or her
posterior is greater than the myopic cutoff posterior. In other words, the social continuation
loss due to U ’s low effort in a dt time interval, in case I received signal s+, is smaller than

r(1− eU)(ws(q+)− s)dt (26)

right before fully separation if and only if q+ ≥ qM , or equivalently, a ≥ aM .

50Here we use the property that in the symmetric MPE under symmetric information, before experimen-
tation stops, the option value per unit of effort to a player is increasing over time as his or her posterior
decreases. Intuitively, the more a player’s posterior differs from 1, the more informational value a break-
through is (that is, a player’s continuation value is convex).

35



Second, under asymmetric information, apart from U ’s continuation loss caused by her
own insufficient effort during the gradual revelation phase, her additional gain from asym-
metric information, as we now show, is exactly expression (26), right before fully separation.
Since type s− does not benefit or suffer from asymmetric information, combining with the
previous paragraph, we obtain that asymmetric information improves ex ante total wel-
fare right before fully separation if and only if a ≥ aM . What’s U ’s additional gain from
asymmetric information?

• In case I received s−, compared with type s−, who obtains the same value as under
the symmetric benchmark, U exerts (1− eU) less effort, thereby saving flow effort cost
r(1− eU)(s− λI−h)dt. Since the continuation benefit of effort are the same for both,
this is also her additional ex post gain from asymmetric information.

• In case I received s+, U exerts (1− eU) less effort than type s+, and hence saves flow
effort cost r(1− eU)(s− λI+h)dt.

Therefore, in expectation, in addition to the continuation loss due to her low effort, U enjoys
an extra gain of

r(1− eU)(s− λUh)dt,

which, applying her continuation value formula (19), equals

r(1− eU)(WU − s)dt.

Applying the value matching condition of WU right before fully separation, equation (23),
we are done.

We now present detailed welfare results for the second case of Proposition 3.

Proposition 4. Assume a ∈ [aS, 1 + 2λ
r
), and Assumption 2 is satisfied. Then

1. either asymmetric information deteriorates ex ante total welfare over the gradual rev-
elation region and the full pooling region (p∗−2 , 1);

2. or asymmetric information strictly deteriorates ex ante total welfare over (p∗−2 , pS−),
and does not affect it over [pS−, 1];

3. or there exists a threshold of the background belief p̃ ∈ (p∗−2 , pS−), such that asymmetric
information deteriorates ex ante total welfare over (p∗−2 , p̃), and improves it over (p̃, 1).

A sufficient and necessary condition for the third case to occur is ρb being either suffi-
ciently large, or sufficiently small. Intuitively, when ρb is sufficiently large, then there is a
large fraction of type s−, implying the two players’ expected gain (occurring only in case I
holds signal s−) is large, relative to their expected loss (occurring only in case I holds signal
s+); when ρb is sufficiently small, then there is a small fraction of type s−, implying a short
gradual revelation phase, and hence a small expected loss of the two players (occurring only
during the gradual revelation phase), relative to the their expected gain.
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8 Empirical Implications

We now explore the empirical implications of the joint behavior pattern during the grad-
ual revelation phase of the MPE constructed: in the absence of a breakthrough, in the
rewarding region of the gradual revelation phase, the informed player maintains high effort,
and the uninformed player increases her effort. The expected total effort can also increase.51

First, as we have mentioned, an econometrician unaware of the information asymmetry
between players would update his belief — and also think the players update beliefs —
according to the background belief. He then would hypothesize that players’ total effort
decrease over time in the absence of breakthrough. Estimating the (misspecified) symmetric
information experimentation model can thus lead him to incorrectly reject the existence of
learning through experimentation, or underestimating its effect. Indeed, many empirical
papers, Conley and Udry (2010, page 59, Column B, Table 6) for instance, interpret players’
non-response to news as the absence of learning through experimentation.52

We can distinguish our model from models with myopic agents or from models with sym-
metric information by investigating a given player’s reaction to the introduction of a new
player into the game. If a player is myopic, introducing a new player with similar or less
experience would not affect his behavior; in contrast, if a player cares about the future, it
would, and it would affect his behavior differently under an asymmetric information setup
and under a symmetric information setup. First, if a player is experimenting before the intro-
duction of a new player, introducing a similarly experienced player would reduce his effort,
due to free riding, whereas introducing a less experienced player would not change much of
his behavior (at least in the short run).53 Second, if he has already stopped experimenting
before the introduction and the new player cannot observe whether he has stopped before
the introduction but can afterward, then introducing a less experienced player would induce
him to restart experimentation.54Finally, if two similarly experienced players have already
stopped experimentation, then replacing one player with a less experienced player would
restart the other player’s experimentation, if the new player cannot observe whether the old
players have stopped experimenting before the introduction but can observe it afterward.

51The expected total effort can increase during the gradual revelation phase if player’s discount rate r is
not too small, so that the uninformed player’s effort rises relatively faster than the pessimistic type reveals
himself (over time).

52In Conley and Udry (2010), it makes sense to reject the existence of learning through experimentation
based on the “non-responsiveness” result in Column B, Table 6; this is because the “technology” being tested
is the labor use of an established crop. Without such contexts, the rejection might be incorrect.

53The former corresponds to a symmetric information setup, whereas the latter to an asymmetric infor-
mation setup.

54If the good news is not conclusive, then introducing a similar experienced player can also restart a
current player’s experimentation.
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9 Conclusion

This paper has studied the impact of initial information asymmetry on agents’ experi-
mentation behavior, using the canonical exponential-bandit model. It has shown that infor-
mation asymmetry leads to new and interesting joint behavior dynamics. When the public
information generated from experimentation becomes too discouraging, the informed player
leads by example — exerting high effort despite the unfavorable public information, which
motivates the follower (the uninformed player) to work harder over time. The follower’s
positive response to the leader’s high effort encourages the leader also to work hard. Due to
this mutual encouragement effect, creating an information asymmetry between two otherwise
symmetric agents may improve total welfare.

The welfare analysis has implications for information design in experimentation games.
Consider a general setting in which only a social planner can observe the initial signal (of I’s),
and before the initial signal is realized, she can send to each player as a signal a garbling of
the initial information structure. It can be shown that when the informativeness of the initial
signal is not too low (that is, it satisfies Assumption 1), the social planner can implement
the following outcome: when s+ is realized, both players play the symmetric MPE (under
public information s+); when s− is realized, both players play cooperatively. She can do so
by: always revealing the true signal (s+ or s−) to one player; revealing privately the true
signal to the other player with probability π ∈ (0, 1) if s+ occurs, and revealing nothing
otherwise. This strategy gives a strictly higher total payoff than revealing her signal to
neither player, to one player, or to both players does.55 By giving all the relevant information
to one player (he), his pessimistic type can be incentivized to stop experimenting at the
cooperative cutoff belief; by revealing only the positive signal s+ to the other player (she)
with some probability, her uninformed type can be incentivized to mimic type s+ before the
informed player stops. Therefore, creating an informed leader mitigates free-riding without
any risk of over-experimentation. In environments where agents are heterogeneous (in their
experimentation benefit or cost, for instance), creating an informed leader can lead to over-
experimentation. It would be interesting to study the optimal information design in such
environments.

55There might exist other strategies (of the social planner) that outperform this strategy in terms of
ex-ante total welfare. We do not explore the possibility here because even with this strategy, it is easy to
construct an MPE that gives a higher total payoff than the implemented outcome given above.
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A Background Belief

This section defines the background belief formally.
Denote Ω ≡ {0, 1}×{s+, s−}×ΩN , where ΩN is the set of point process paths. Similarly

denote Ωt ≡ {0, 1} × {s+, s−} × Ωt
N , where Ωt

N is the set of point process paths till time
t. Let σ ({0, 1} × {s+, s−}) be the sigma-algebra generated by {0, 1} × {s+, s−}, (FNt )t the
filtration generated by point process N . Define (Ft)t ≡ (σ ({0, 1} × {s+, s−}) ⊗ FNt )t and
F ≡ F∞. For a given prior p0, an effort path e ≡ (eIt , e

U
t )t≥0 induces a distribution Pe,p0 over

the filtered space (Ω,F , (Ft)t≥0), satisfying for each (θ, sl, N
t) ∈ Ωt where N t denoting the

experimentation outcome history such that no breakthrough has arrived till time t,56

Pe,p0(θ, sl, N
t) = Pe,p0(sl, N

t|θ)Pe,p0(θ)
= Pe,p0(sl|θ)Pe,p0(N t|θ)Pe,p0(θ),

where the second inequality is due to the fact that given e and conditional on θ, sl and N t

are independently distributed. Note that Pe,p0(θ) = p0, Pe,p0(sl|θ) does not depend on e and
p0, and Pe,p0(N

t|θ) does not depend on p0.
Given Pe,p0 , the distribution of θ conditional on (sl, N

t), if
∑

θ Pe,p0(sl|θ)Pe,p0(N t|θ)Pe,p0(θ) >
0, is

Pe,p0(θ|sl, N t) =
Pe,p0(sl|θ)Pe,p0(N t|θ)Pe,p0(θ)∑
θ Pe,p0(sl|θ)Pe,p0(N t|θ)Pe,p0(θ)

(27)

In our asymmetric information game, Pe,p0(θ|sl, N t) is the sl-type informed player’s posterior,
after he observes effort history et and experimentation outcome history N t.

(1) We now show that for a given effort path e, this posterior does not depend on whether
he observes sl before N t or after.

Dividing both the numerator and denominator of the right-hand side of equation (27) by∑
θ̃ Pe,p0(sl|θ̃)Pe,p0(θ̃), we have

Pe,p0(θ|sl, N t) =
Pe,p0(N

t|θ)[Pe,p0(sl|θ)Pe,p0(θ)/
∑

θ̃ Pe,p0(sl|θ̃)Pe,p0(θ̃)]∑
θ Pe,p0(N

t|θ)[Pe,p0(sl|θ)Pe,p0(θ)/
∑

θ̃ Pe,p0(sl|θ̃)Pe,p0(θ̃)]

=
Pe,p0(N

t|θ)Pe,p0(θ|sl)∑
θ Pe,p0(N

t|θ)Pe,p0(θ|sl)

The second equality is by Bayes rule. This equality can be interpreted as follows: after
observing the noisy signal sl, a player (or an outsider) with initial prior p0 updates his or
her prior to Pe,p0(θ|sl) (note it is independent of e); then the player observes a path of effort
till time t et, an experimentation outcome history till t N t, and he or she updates belief
according to Bayes rule, using Pe,p0(θ|sl) the new “prior”. This is how the informed player
in our asymmetric information game updates his belief.

56That is, N t refers to the constant function 0[0,t].
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Similarly, dividing both the numerator and denominator of the right-hand side of equation
(27) by

∑
θ̃ Pe,p0(N

t|θ̃)Pe,p0(θ̃), we have

Pe,p0(θ|sl, N t) =
Pe,p0(sl|θ)[Pe,p0(N t|θ)Pe,p0(θ)/

∑
θ̃ Pe,p0(N

t|θ̃)Pe,p0(θ̃)]∑
θ Pe,p0(sl|θ)[Pe,p0(N t|θ)Pe,p0(θ)/

∑
θ̃ Pe,p0(N

t|θ̃)Pe,p0(θ̃)]

=
Pe,p0(sl|θ)Pe,p0(θ|N t)∑
θ Pe,p0(sl|θ)Pe,p0(θ|N t)

. (28)

This equality can be interpreted as follows: after observing a path of effort till time t et,
an experimentation outcome history till t N t, a player (or an outsider) with initial prior p0

updates his or her prior to Pe,p0(θ|N t); then the player observes the noisy signal sl, and he
or she updates belief according to Bayes rule, using Pe,p0(θ|N t) the new “prior”.

(2) In the asymmetric information game, any public history (et, N t) that leads to the same
posterior of s−-type informed player must also lead to the same posterior of s+-type informed
player. This is because on the right-hand side of equation (28), Pe,p0(sl|θ) is independent of
e and p0, if the left-hand side when sl replaced by s− is equal to some p−, then there is a
unique value of Pe,p0(θ|N t) satisfying equation (28), denoted as p, and hence a unique value
of the left-hand side of equation (28) when sl replaced by s+. That is, one variable, be it
p−, p+, or p, is sufficient to represent the posteriors of the two types of the informed player.
In this draft, we use p, that is, Pe,p0(θ|N t), and call it “background belief”.

B Some Best Responses

B.1 U’s best response to a full pooling Strategy

In the following Lemma, we assume both types of player I experiment with full resource
over some interval of the back ground belief p, say [p, p̄], in the asymmetric information
game, and analyze U ’s best response. Given this full pooling strategy of I, the cumulative
probability of revealing is a constant (over the interval of background belief). Let’s denote
it by Y . Then player I’s reputation µ satisfies equation (8), and continuously decreases with
time, according to equation (9) with dYt being 0 (, for p ∈ [p, p̄]).

Lemma 5. Assume over some interval [p, p̄] both types of player I experiment with full

resource (as a pure strategy). Let ẽU : [p, p̄] × [0, 1] → [0, 1] be U ’s best response to this

strategy, and W̃U : [p, p̄] × [0, 1] → R her continuation value function if she plays the best
response and player I plays the given strategy. Then

1. U finds it optimal to use corner solutions, that is, either to experiment with full re-
source, or not to experiment. At any point of p where U switches actions, her value
satisfies W̃U(p,µµµ) = s+ s− λU(p,µµµ)h.

2. If W̃U(p,µµµ) > s + s − λU(p,µµµ)h, then eU(p,µµµ) = 1; If W̃U(p,µµµ) < s + s − λU(p,µµµ)h,
then eU(p,µµµ) = 0; If W̃U(p,µµµ) = s+ s− λU(p,µµµ)h, then eU(p,µµµ) ∈ [0, 1].
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3. If moreover U ’s value function satisfies the boundary condition WU(p,µµµ) = s + s −
λU(p,µµµ)h, then she finds it optimal to adopt a cutoff strategy: to experiment with full
resource if p ≥ p∗, and not to experiment otherwise, for some p∗ ∈ [p, p̄].

4. If on top of the boundary condition in point 3, at p = p is also satisfied

r
(
λU (p,µµµ)h− s

)
+ λp (1− p) dλ

U (p,µµµ)

dp
h+ λU (p,µµµ)

(
λh− s−

(
s− λU (p,µµµ)h

))
≥ 0(29)

then U finds it optimal to experiment with full resource over [p, p̄].

Proof. Point 1. Given player I’s strategy, player U ’s value function W̃U satisfies the following
HJB equation, for p ∈ (p, p̄),

rW̃U (p,µµµ) = max
e∈[0,1]

e

[
r
(
λU (p,µµµ)h− s

)
− λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]

+

[
−λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]
+ rs

At any state (p,µµµ) where player U is indifferent between experimenting and not experiment-
ing, we have

r
(
s− λU (p,µµµ)h

)
= −λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
(30)

and consequently the HJB equation of W̃U reduces to

rW̃U (p,µµµ)− rs = −λp (1− p) dW̃
U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
The above equations implies that

W̃U(p,µµµ) = s+ s− λU(p,µµµ). (31)

Since there is no subinterval of [p, p̄] over which W̃U satisfy equation (30) and (31) simulta-
neously, there is no subinterval of [p, p̄] over which player U strictly prefers an interior level
of experimentation.

Point 2 is obvious with the above analysis.
Point 3. We will show that W̃U(p,µµµ) intersects with s + s − λU(p,µµµ) at most once for

p ∈ (p, p̄). Then combining Point 2, we obtain Point 3.
To show the former, it is sufficient to show that if there is some p̃ ∈ [p, p̄) such that

W̃U(p̃,µµµ) = s+s−λU(p̃,µµµ), and dW̃U (p̃+,µµµ(p̃+))
dp

> −dλU(p,µµµ(p))
dp

, then W̃U(p,µµµ) > s+s−λU(p,µµµ)

for all p ∈ (p̃, p̄). Suppose by negation there is some p̌ ∈ (p̃, p̄) such that W̃U(p̌,µµµ) =
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s + s− λU(p̌,µµµ), then we must have dW̃U (p̌−,µµµ(p̌))
dp

< dW̃U (p̃+,µµµ(p̃+))
dp

, and W̃U(p̌,µµµ) < W̃U(p̃,µµµ)

since s+ s−λU(p,µµµ) strictly decreases in p. But these inequalities imply that equation (30)
cannot be satisfied at both p̃ and p̌. A contradiction.

Point 4. Condition (29), together with equation (30) and WU(p,µµµ) = s + s − λU(p,µµµ),

implies that
dW̃U(p+,µµµ(p+))

dp
> −dλU(p,µµµ(p))

dp
, hence by the argument employed to prove Point

3, we conclude that ẽU(p,µµµ) = 1 over (p, p̄].

B.2 Best response in the symmetric information game

In the symmetric information game, a counterpart of Lemma 5, with µ replaced by 0, is
valid. More generally, if one player experiment with a constant level of resource over some
interval of background belief, then the other player finds it optimal to use corner solutions
over this interval, with at most two cutoffs. The proof is similar and hence omitted.

C Equilibrium Construction and Analysis

C.1 Beliefs

Lemma 6. Let {pt}t≥0 denote the background belief process, {µt}t≥0 I’s reputation process,
and {Yt}t≥0 the process of cumulative probability of separation induced by a strategy profile
(eI+, eI−, eU) with eI+ being pure. If over an interval of time [t1, t2] the revealing intensity
corresponding to {Yt}t≥0 is finite and continuously differentiable with respect to time, and
{(eI+t , eUt )}t≥0 are continuous (over [t1, t2]), then the function µ̃ defined by µt = µ̃(pt) for
t ∈ [t1, t2], is continuously differentiable in p over [pt2 , pt1 ]. Moreover, over [t1, t2], the
reputation process {µt}t≥0 evolves according to

dµt = −µ̃p (pt)
(
eI+t + eUt

)
pt (1− pt)λ1dt. (32)

Proof. From equation (6), over any interval of time [t1, t2] such that (eIt + eUt ) > 0 and
pt ∈ (0, 1), we have {pt}t≥0 strictly decreases in t over [t1, t2]. Moreover, with {(eI+t , eUt )}t≥0

continuous over [t1, t2], we have dt
dpt

finite and continuous for t ∈ [t1, t2].

If the revealing intensity corresponding to {Yt}t≥0 is finite and continuous with respect to
time for t in [t1, t2], then {dYt

dpt
}t≥0 is also finite and continuously differentiable with respect

to time for t ∈ [t1, t2], using the chain rule dYt
dpt

= dYt
dt

dt
dpt

and the result { dt
dpt
}t≥0 being finite

and continuous for t ∈ [t1, t2] obtained in the previous paragraph.
Applying equation (9), and that pt ∈ (0, 1), we have dµt

dpt
is finite and continuous for

t ∈ [t1, t2]. Therefore, µ̃ is continuously differentiable over [pt2 , pt1 ], and satisfies

dµt = µ̃p (pt) dpt,

which, together with equation (6), gives formula (32).
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C.2 Characterization of the gradual revelation phase

C.2.1 U ’s strategy (proof of the second case of Lemma 2)

We now derive player U ’s strategy in the gradual revelation phase for p ∈ (p∗−1 , pgr) (if
nonempty), assuming that the equilibrium with gradual revelation is an equilibrium.

Proof. First, W I−(p, 0) satisfies the same HJB equation as equation (14), with the arguments
(p, µ̂̂µ̂µ (p)) in all functions replaced by (p, 0). Since for p ∈ (p∗−1 , pgr), e

I− (p, 0) ∈ (0, 1), the
terms in equation (14) that are directly affected by type s−’s effort must be 0:[

r
(
λI− (p)h− s

)
− λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
= 0.

As λI− (p)h− s < 0 for p ∈ (p∗−1 , pgr), we also have[
−λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
> 0.

During gradual revelation phase, type s− is indifferent between revealing and not reveal-
ing, and hence W I− (p, µ̂̂µ̂µ (p)) = W I− (p, 0). This equality, together with both W I− (p, µ̂̂µ̂µ (p))
and W I− (p, 0) satisfying the HJB equation (14), implies that eU (p, µ̂̂µ̂µ (p)) = eU (p, 0) over
(p∗−1 , pgr). Since by construction eU (p, 0) = eS− (p), we have eU (p, µ̂̂µ̂µ (p)) = eS− (p). There-
fore, the uninformed player’s effort is decreasing over time during the non-rewarding re-
gion.

C.2.2 U ’s HJB equation and experimentation incentive

We here offer a heuristic proof that U ’s value function during the gradual revelation
phase satisfies equation (17).

Proof. Suppose at time-t state (pt, µ̂̂µ̂µ(pt)), player U considers the following strategy: experi-
menting with resource ẽ during the time interval [t, t+dt), experimenting with her equilibrium
effort eU(pt, µ̂̂µ̂µ(pt)) during the time interval [t + dt, t + 2dt) if player I does not reveal over
[t, t+ dt), and playing according to the candidate equilibrium strategy at other states.

The “required return” of doing so, rWU (p, µ̂̂µ̂µ) · 2dt, should equal the right-hand side of
equation (17): the expected current flow payoff in the 2dt duration of time,

r
(
ẽ+ eU (p, µ̂̂µ̂µ)

) (
λU (p, µ̂̂µ̂µ)h− s

)
dt+ 2rsdt,

plus the “capital gain”,

E[W (pt+2dt, µ̂̂µ̂µ (pt+2dt))−W (pt, µ̂̂µ̂µ (pt))],

which can be further decomposed into three parts. The first two parts of the “capital gain”
are similar with that in equation (14), that is, the change in her continuation value in case
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good news does not arrive and type s− does not reveal his type in [t, t+2dt), and the change
in her continuation value in case good news arrives in [t, t+2dt), multiplied by the probability
of each event respectively. The third part of the “capital gain” comes from the possibility
that type s− might reveal his type in [t, t+ 2dt), an event that would cause her continuation
value to reduce by an amount |WU (p, 0)−WU (p, µ̂̂µ̂µ) |.

It is crucial to notice that type s−’s revealing intensity over [t, t+ dt), denoted as y, does
not depend on player U ’s effort level ẽ over [t, t + dt), while type s−’s revealing intensity
over [t, t + 2dt), denoted as ỹ, does. We now analyze the latter effect. Conditional on type
s− does not reveal his type in the interval [t, t+ dt), the state at t+ dt before players move,
will evolve to

(pt − (1 + ẽ)λp (1− p) dt, µ̂̂µ̂µ (pt)− µ̂̂µ̂µp (1 + ẽ)λpt (1− pt) dt) ,

which is below the curve µ̂̂µ̂µ. Therefore, at time t+ dt, according to the equilibrium prescrip-
tion, type s− will reveal with a probability such that the action of non-revealing will push
the state up to the curve µ̂̂µ̂µ again, implying that the new state at t+ 2dt will be(
pt −

(
1 + ẽ+ 1 + eU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt, µ̂̂µ̂µ

(
pt −

(
1 + ẽ+ 1 + eU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt

))
.

Ignoring higher order terms of dt, the amount of adjustment in state variable in this 2dt
duration of time equals to(
−
(
1 + ẽ+ 1 + eU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt,−µ̂̂µ̂µp

(
1 + ẽ+ 1 + eU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt

)
.

Employing equation (15), the amount of adjustment implies that in this 2dt duration of time,
type s− would reveal his type with probability

(y + ỹ)dt =

(
φ (p, µ)− µ̂̂µ̂µp

µ̂̂µ̂µ

)(
1 + ẽ+ 1 + eU (pt, µ̂̂µ̂µ)

) p (1− p)λ
(1− µ̂̂µ̂µ)

dt.

Collecting terms that share the same effort term together, we obtain

2rWU (p, µ̂̂µ̂µ) = max
ẽ∈[0,1]

ẽ
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A (p, µ̂̂µ̂µ)

]
+ A(p, µ̂) + s

+eU (p, µ̂̂µ̂µ)
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A(p, µ̂)

]
+ A (p, µ̂̂µ̂µ) + s

This equation is the same with equation (17), since eU(p, µ̂) is a solution to the maximization
problem.

During gradual revelation phase, U ’s equilibrium effort is interior (except at p = p∗−1 ).
Therefore, her IC condition (18) must hold.

This IC condition, together with the HJB equation (17), implies that player U ’s value
function also satisfies equation (19).
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C.2.3 The gradual revelation path µ̂̂µ̂µ (proof of Lemma 3)

Formula of g.
Before introducing this ODE, we need to define two functions B and C:

B (p, µ) =
(
s− λU (p, µ)h

)
−
(
s− λI− (p)h

)
eI− (p, 0) ,

C (p, µ) = r
(
λU (p, µ)h− s

)
+ λp (1− p)λUp (p, µ)h+ λU (p, µ)

(
λh− s−

(
s− λU (p, µ)h

))
,

where B is player U ’s value reduction caused by type s−’s revealing action, and C could be
interpreted as player U ’s expected pseudo-payoff of experimentation had µ being a constant.
Then, using U ’s indifference condition (18) and her value function (19), we have

µ̂̂µ̂µp = g (p, µ̂̂µ̂µ)

≡ −
(

C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

)
µ̂̂µ̂µ, p ∈ (p∗−2 , pgr) (33)

Before proving Lemma 3, we derive some preliminary results. We first derive some
convenient formula for for µ̂̂µ̂µp/µ̂̂µ̂µ and for dλU (p, µ̂̂µ̂µ) /dp, which will be used in this section and
the following sections. Then In Lemma 7, we show that µ̂̂µ̂µ is a strictly decreasing function.
With this lemma, we show that the ODE problem defined by equations (20)-(22) has a
unique solution, in Lemma 8.

We now establish equalities (34) to (37):

−µ̂̂
µ̂µp
µ̂̂µ̂µ

=
dλU (p, µ̂̂µ̂µ)h/dp

B (p, µ̂̂µ̂µ)
+

1

λp (1− p)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λI+ (p)

]
(34)

−dλ
U (p, µ̂̂µ̂µ)

dp
=

λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λ+ λI− (p)− 1

µ̂̂µ̂µ

(
ρg (1− ρb)
ρb − ρg

λ+ λI− (p)

)]
(35)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λ+ λI− (p)−
(
λ− λI− (p)

)
λI− (p)

λU (p, µ̂̂µ̂µ)− λI− (p)

]
(36)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

−
λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ)− λI− (p)

]
. (37)
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Recall the definitions of µµµo, λI+, λI−, λU , and φ (page 12, 29), we have

φ (p, µ) ≡ (1− µ) (ρb − ρg)
µµµo (p) (1− µµµo (p))

=
(1− µ)

(
λI+ (p)− λI− (p)

)
λp (1− p)

=
λI+ (p)− λU (p, µ)

λp (1− p)
, (38)

Combining equations (20) and (38), at p such that µ̂̂µ̂µ(p) 6= 0, we have

−µ̂̂
µ̂µp
µ̂̂µ̂µ

=
C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

=
λUp (p, µ̂̂µ̂µ)h

B (p, 0)
+

B (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λI+ (p)

]
(39)

Applying equalities dλU/dp = λUp + λUµ µ̂̂µ̂µp and B (p, 0) = B (p, µ̂̂µ̂µ) + λUµ µ̂̂µ̂µh, we arrive at
equation (34).

We now derive an explicit formula of dλU (p, µ̂̂µ̂µ)h/dp. Before this, we need an explicit

form of
λUp
λUµ µ̂̂µ̂µ

.

By the definition of λI+ (p) and λI− (p), we have

λI+ (p)− λI− (p) =
λp (1− p)

(
ρb
ρg
− 1−ρb

1−ρg

)
(
p+ (1− p) 1−ρb

1−ρg

)(
p+ (1− p) ρb

ρg

)
Expanding λUp , λUµ , and apply the above equation, we have

λUp
λUµ µ̂̂µ̂µ

=
λUp

µ̂̂µ̂µ (λI+ (p)− λI− (p))

=
ρg (1− ρg)

p (1− p) (ρb − ρg)

[
p+ (1− p) ρb

ρg

p+ (1− p) 1−ρb
1−ρg

1− ρb
1− ρg

+

(
1

µ̂̂µ̂µ
− 1

) p+ (1− p) 1−ρb
1−ρg

p+ (1− p) ρb
ρg

ρb
ρg

]

=
λ

λp (1− p)

[(
ρb (1− ρg)
ρb − ρg

− λI+ (p)

λ

)
+

(
1

µ̂̂µ̂µ
− 1

)(
ρg (1− ρb)
ρb − ρg

+
λI− (p)

λ

)]
=

λ

λp (1− p)

[(
1− λI+ (p)

λ

)
+

1

µ̂̂µ̂µ

ρg (1− ρb)
ρb − ρg

+

(
1

µ̂̂µ̂µ
− 1

)
λI− (p)

λ

]
(40)
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Subtracting
λUp
λUµ µ̂̂µ̂µ

+ dλU (p,µ̂̂µ̂µ)h/dp
B(p,µ̂̂µ̂µ)

from both sides of equation (34), and using equation (40),

we have

−dλ
U (p, µ̂̂µ̂µ)

dp

B (p, 0)

λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

=
1

λp (1− p)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+ λU (p, µ̂̂µ̂µ)− λI+ (p)

−λ+ λI+ (p) + λI− (p)− 1

µ̂̂µ̂µ

(
ρg (1− ρb)
ρb − ρg

λ+ λI− (p)

)]
Equation (35) follows from this equation immediately. Using the following equality, which
is obtained after some algebra,

1

µ̂̂µ̂µ

(
ρg (1− ρb)
ρb − ρg

λ+ λI− (p)

)
=

(
λ− λI− (p)

)
λI− (p)

λU (p, µ̂̂µ̂µ)− λI− (p)
,

we obtain equality (36). Rearranging terms, we have equality (37).
Before proving existence of solution to the ODE problem (20)-(22), we will show that

µ̂̂µ̂µ satisfying equation (20) has some a priori bound (if we impose some conditions that are
necessary for the candidate equilibrium to be an equilibrium). Lemma 7 is a useful step
towards this. Also, note that B(pS−, 0) = 0 (since eS−(pS−) = 1), and B(p, 0) > 0 for
p ∈ [p∗−2 , pS−), hence we will treat the point pS− with care.

Lemma 7. Let α ∈ (p∗−2 , pS−) and µ̂̂µ̂µ|[p∗−2 ,α) be a solution to the ODE problem defined by

(20) restricted over [p∗−2 , α] and the initial condition (21). If µ̂̂µ̂µ ∈ (0, 1) and B (p, µ̂̂µ̂µ) > 0 over
(p∗−2 , α), then µ̂̂µ̂µp < 0 over (p∗−2 , α).

Proof. Define

D (p, µ̂̂µ̂µ) ≡
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+ λU (p, µ̂̂µ̂µ)− λ. (41)

Note that dλU (p, µ̂̂µ̂µ) /dp ≤ 0, implies µ̂̂µ̂µp < 0. Therefore, if D (p, µ̂̂µ̂µ) > 0 on a Gradual
Revelation path, then Lemma 7 would follow. We now show D (p, µ̂̂µ̂µ) > 0.

Observe that, (i) if dλU (p, µ̂̂µ̂µ) /dp ≤ 0, then D (p, µ̂̂µ̂µ) > 0, from equality (36) and the
definition of D; (ii) if dλU (p, µ̂̂µ̂µ) /dp > 0, then B (p, µ̂̂µ̂µ (p)) strictly decreases as p increases,
and hence D (p, µ̂̂µ̂µ) strictly increases as p increases. Therefore, if we show D (p, µ̂̂µ̂µ) > 0 at
p = p∗−2 , then by continuity of D and the above two observations, we have D (p, µ̂̂µ̂µ) > 0 for
p ∈ [p∗−2 , pgr).

From now till the end of this proof, if not mentioned, p is fixed at p∗−2 . Using the initial
condition (21), at p = p∗−2 , we have

λU (p, µ̂̂µ̂µ) (λh− s)
s− λU (p, µ̂̂µ̂µ)h

=
s
(
λI+ (p)− λI− (p)

)
+ λI− (p)

(
W S+ (p)− s

)
(s− λI− (p)h) (W S+ (p)− s)

(λh− s)
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Applying the definition of D, and the fact that eS−(p) = 0 at p = p∗−2 , we obtain

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
1

s− λI− (p)h

[
s
(
λI+ (p)− λI− (p)

) λh−W S+ (p)

W S+ (p)− s
+ λI− (p)

(
λI+ (p)− λh

)]
Employing the definition of p∗−2 (equation (1)) and of λI−, the above equality becomes

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
−W S+ (p)

(
r + 2λI+ (p)

)
+ (2λ+ r)λI+ (p)h

2 (W S+ (p)− s)
(42)

By Assumption 1, p∗−2 ≥ pS+, we have eS+ = 1 at p = p∗−2 . Recall wS is the continuation
value function corresponding to the symmetric MPE under symmetric information, which is a
function of the true posterior, rather than the background belief, that is, wS(qqq+(p)) = W S+(p)
( with qqq+ defined in equation (3)).

Since in the symmetric MPE in the symmetric information setup, both players experiment
with full resource if their common posterior is above qS, wS satisfies the following HJB
equation for qqq+(p) > qS,

rwS
(
qqq+
)
− rs = r

(
λqqq+h− s

)
− 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)

+ 2λqqq+
(
λh− wS

(
qqq+
))
,

where the argument of qqq+ is omitted.
Rearranging terms, we have

−wS
(
qqq+
) (
r + 2λqqq+

)
+ (2λ+ r)λqqq+h = 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)
. (43)

With this equation, equation (42) becomes

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
. (44)

Therefore,

D (p, µ̂̂µ̂µ) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
−
(
1− qqq+

)
λ

=
(
1− qqq+

)
λ
qqq+wSq (qqq+)−

(
wS (qqq+)− s

)
(wS (qqq+)− s)

(45)

>
(
1− qqq+

)
λ

(qqq+ − q∗1)wSq (qqq+)−
(
wS (qqq+)− s

)
(wS (qqq+)− s)

> 0 (46)

The second-to-last inequality is due to wSq (qqq+) > 0 at p = p∗−2 ; the last inequality is due to
the convexity of wS over [q∗1, 1], and that wS (q∗1) = s.

Lemma 8. If µ̂̂µ̂µ(p∗−2 ) defined by (21) is such that µ̂̂µ̂µ(p∗−2 ) < µµµo(p∗−2 ), then the ODE prob-
lem defined by (20)-(22) has a unique solution µ̂̂µ̂µ. Moreover, the right boundary pgr is in
(p∗−2 , pS−).

48



Proof. Let ε ∈ (0, pS−) be such that

s+ s− λU
(
pS− − ε,µµµo

(
pS− − ε

))
h = W S− (pS− − ε) .

Such an ε exists because both sides of the above equation are continuous in ε, the left-hand
side is strictly greater than the right-hand side at ε = pS−, and strictly smaller than the latter
at ε = 0. As ε > 0, we have eI− (p, 0) < 1 over [p∗−2 , pS−− ε],57 and hence B (p, 0) is bounded
for p ∈ [p∗−2 , pS− − ε]. C(p, µ̂̂µ̂µ), φ(p, µ̂̂µ̂µ), and B(p, µ̂̂µ̂µ) are also bounded for p ∈ [p∗−2 , pS− − ε]
and µ̂̂µ̂µ ∈ [0, 1]. To restrict µ̂̂µ̂µ to take values in [0, 1], define

χ(µ) =


µ, if µ ∈ [0, 1];

0, if µ < 0;

1, if µ > 1.

Existence. Consider the following initial value problem

µ̂̂µ̂µp = −
(

C (p, χ (µ̂̂µ̂µ))

λp (1− p)B (p, 0)
− φ (p, χ (µ̂̂µ̂µ))

B (p, χ (µ̂̂µ̂µ))

B (p, 0)

)
χ (µ̂̂µ̂µ) , p ∈ (p∗−2 , pS− − ε),(47)

with the initial condition (21). µ̂̂µ̂µp as a function of (p, µ̂̂µ̂µ), defined by equation (47), is bounded,
and Lipschitz continuous. According to standard theorems (for example, Picard–Lindelöf
theorem), this initial value problem has a unique solution, denoted as as µ̂̂µ̂µ (with an abuse
of notation). Let pgr ≡ inf{p ∈ [p∗−2 , pS− − ε] | µ̂̂µ̂µ(p) > µµµo(p)}.

We will show at the end of this proof that µ̂̂µ̂µ satisfies

Claim 2. Over the interval (p∗−2 , pgr), we have µ̂̂µ̂µ ∈ (0, 1), and B (p, µ̂̂µ̂µ) > 0.

Claim 3. µ̂̂µ̂µ
(
pS− − ε

)
< µµµo

(
pS− − ε

)
.

Claim 2 says that µ̂̂µ̂µ, the unique solution to ODE (47) and (21), satisfies ODE (20) over
[p∗−2 , pgr]. Claim 3, together with µ̂̂µ̂µ

(
p∗−2
)
> µµµo

(
p∗−2
)

and the continuity of µ̂̂µ̂µ and µµµo, implies
that pgr ∈ (p∗−2 , pS− − ε).

Therefore, µ̂̂µ̂µ restricted over [p∗−2 , pgr] is a solution to the ODE problem (20)-(22).
Uniqueness. µ̂̂µ̂µ restricted over [p∗−2 , pgr] is the unique solution to this ODE problem.

Suppose this ODE problem has another solution µ̌̌µ̌µ, and let p̌ ∈ [p∗−2 , pgr] be the infimum of
p such that µ̌̌µ̌µ differs from µ̂̂µ̂µ. Then we have µ̌̌µ̌µ(p̌) = µ̂̂µ̂µ(p̌) ∈ (0, 1), and µ̌̌µ̌µ ∈ (0, 1) over [p̌, p̌+η]
for some small η. Hence µ̌̌µ̌µ|[p̌, p̌ + η] is a solution to the ODE problem (47) restricted over
[p̌, p̌ + η] with the initial value given by µ̌̌µ̌µ(p̌) = µ̂̂µ̂µ(p̌), which contradicted with the latter
having a unique solution.

We now prove the two claims above.

Proof of Claim 3. Suppose µ̂̂µ̂µ
(
pS− − ε

)
≥ µµµo

(
pS− − ε

)
, then WU(pS−−ε, µ̂̂µ̂µ(pS−−ε)) defined

by equation (19) is smaller than W S−(pS− − ε) by our choice of ε, then using the equation
that B(p, µ̂̂µ̂µ) = WU(p, µ̂̂µ̂µ) −W S−(p), we have B(pS− − ε, µ̂̂µ̂µ(pS− − ε)) ≤ 0. This contradicts
with Claim 2.

57Recall that over [p∗−2 , pS−], eI− (p, 0) ≡ eS−(p), and is strictly increasing from 0 to 1.
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Proof of Claim 2. Suppose by negation that there is some p ∈ [p∗−2 , pgr] such that B (p, µ̂̂µ̂µ) ≤
0; denote the smallest p satisfying this inequality as p̃. Since B (p, µ̂̂µ̂µ) > 0 at p = p∗−2 and B
is continuous, we have p̃ > p∗−2 , and B (p, µ̂̂µ̂µ) > 0 for p ∈ [p∗−2 , p̃).

µ̂̂µ̂µ is strictly decreasing over [p∗−2 , p̃). Because otherwise, there would exist a ˜̃p ∈ (p∗−2 , p̃)
such that µ̂̂µ̂µp(˜̃p) = 0,58 implying that µ̂̂µ̂µ|[p∗−2 , ˜̃p) satisfies ODE (20) when restricted over [p∗−2 , ˜̃p),

and the initial condition (21), and yet it violates Lemma 7, a contradiction. Therefore,
χ(µ̂̂µ̂µ) = µ̂̂µ̂µ for p ∈ [p∗−2 , p̃], hence µ̂̂µ̂µ also satisfies ODE (20). But the function WU defined by
s+s−λU(µ̂̂µ̂µ, p)h (that is, equation (19)) would not satisfy equation (18) (because the left-hand
side>0 for p sufficiently close to p̃), which contradicts with µ̂̂µ̂µ satisfying ODE (20).

Proof of Lemma 3. First, µ̂̂µ̂µ is continuous over (p∗−2 , pgr). Suppose by negation that there
is some p̃ ∈ (p∗−2 , pgr) at which µ̂̂µ̂µ is discontinuous, that is, µ̂̂µ̂µ(p̃+) < µ̂̂µ̂µ(p̃−).59 Since over
a small right neighborhood of p̃, player U is indifferent between experimenting and not
experimenting, we must have WU(p+, µ̂̂µ̂µ(p̃+)) = s + s − λU(p+, µ̂̂µ̂µ(p̃+))h, by equation (19).
Similarly, we have WU(p−, µ̂̂µ̂µ(p̃−)) = s+ s− λU(p−, µ̂̂µ̂µ(p̃−))h. Since λU strictly increases in
its second argument, these two inequalities imply that WU(p+, µ̂̂µ̂µ(p̃+)) > WU(p−, µ̂̂µ̂µ(p̃−)).
But this contradicts with the fact that WU ≥ s, as WU(p−, µ̂̂µ̂µ(p̃−)) is the average between
WU(p+, µ̂̂µ̂µ(p̃+)) and s.

Similarly, µ̂̂µ̂µ is continuous at pgr. The difference between this case and the previous
case is that, over a small right neighborhood of pgr, player U strictly prefers to experiment,
and type s− strictly prefers not to reveal. Therefore, by Point 2 of Lemma 5, we have
WU(p+, µ̂̂µ̂µ(p̃+)) ≥ s+ s− λU(p+, µ̂̂µ̂µ(p̃+))h. Continuity of µ̂̂µ̂µ at pgr follows the same logic as
in the previous case.

Finally, we show that µ̂̂µ̂µ does not have singular continuous part. Let µ̃̃µ̃µ be the solution
to the ODE problem (20)-(22), and let W̃U be player U ’s continuation value function cor-
responding to the equilibrium associated with Gradual Revelation path µ̃̃µ̃µ.60 Suppose by
negation there is another Gradual Revelation path µ̌̌µ̌µ (corresponding to another equilibrium
which takes the same feature with the candidate equilibrium) that satisfies equation (20)
almost everywhere, equations (21), and (22), and that µ̃̃µ̃µ(p′) differs from µ̌̌µ̌µ(p′) for some
p′ ∈ (p∗−2 , pgr). Without loss of generality, suppose µ̃̃µ̃µ(p′) > µ̌̌µ̌µ(p′). Let p′′ be the largest p’s
such that p ≤ p′ and that µ̃̃µ̃µ(p) ≥ µ̌̌µ̌µ(p). Existence of p′′ is due to the continuity of µ̃̃µ̃µ and
µ̌̌µ̌µ, and that µ̃̃µ̃µ(p∗−2 ) = µ̌̌µ̌µ(p∗−2 ) (from the initial condition (21)). By the definition of p′′, we

have lim supε↓0
µ̌̌µ̌µ(p′′+ε)−µ̌̌µ̌µ(p′′)

ε
< µ̃̃µ̃µp(p

′′). Let W̌U be U ’s continuation value function of the
equilibrium with Gradual Revelation path µ̌̌µ̌µ. Then µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′) implies that
W̌U(p, µ̌̌µ̌µ) > W̃U(p, µ̃̃µ̃µ). We now show that µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′) and that µ̃̃µ̃µ(p′′) = µ̌̌µ̌µ(p′′)
imply that W̌U(p, µ̌̌µ̌µ) < W̃U(p, µ̃̃µ̃µ) for p ∈ (p′′, p′′ + ε1), if ε1 small enough. A contradiction.

58 ˜̃p > p∗−2 because µ̂̂µ̂µ(p∗−2 ) < 0.
59Note in our candidate equilibrium, µ̂̂µ̂µ is discontinuous if and only if type s− reveals with a lump-sum

probability, hence at any p, µ̂̂µ̂µ can only jump downward.
60Need result from the Verification section showing that this is indeed an equilibrium.
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Fix a small ε > 0, we change the strategies of type s− and of player U in the equilibrium
associated with Gradual Revelation path µ̌̌µ̌µ as follows: starting at (p′′ + ε, µ̌̌µ̌µ(p′′ + ε)), type
s− does not reveal his type as long as background belief is in (p′′, p′′ + ε]; at the background
belief p′′, he reveals with a lump-sum probability such that his reputation jumps to µ̌̌µ̌µ(p′′); at
all other states, he plays his equilibrium strategy associated with Gradual Revelation path
µ̌̌µ̌µ. U plays a best response to I’s new strategy (, which is 0 effort). Denote U ’s continuation

value corresponding to this new strategy profile as ˇ̌WU , which will be written as simply a
function of the background p, for ease of notation. As type s− works harder in this new

strategy profile, we have ˇ̌WU ≥ W̌U at p = p′′ + ε.61 At p = p′′, according to the new

prescription, type s− will reveal with probability
Y̌ (0)−Y̌ (ε)

1−Y̌ (ε)
,62where Y̌ solves

µ̌̌µ̌µ(p′′ + η) =
µµµo(p′′ + η)

µµµo(p′′ + η) + [1− µµµo(p′′ + η)]
(
1− Y̌ (η)

) , (48)

for η = 0, ε. That is, Y̌ (ε) is type s−’s cumulative revelation probability giving him a
reputation µ̌̌µ̌µ(p′′ + ε), when the background belief is p′′ + ε. Similarly we can define Y̌ (0),
Ỹ (ε), and Ỹ (0).

Since according to the new strategy of type s−, he will reveal with a lump-sum probability
at p′′, we have

ˇ̌WU(p′′+) =
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
s+ (1− Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
)W̌U(p′′, µ̌̌µ̌µ(p′′)). (49)

Let tε denote the time it takes for the background belief to drop from p′′+ ε to p′′. By using
equation (49), and the fact that U ’s best response to I’s pooling strategy over (p′′, p′′ + ε) is
0 effort, we have

ˇ̌WU(p′′ + ε) = (rs+ λUλh)tε + (1− rtε − λU tε)(
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
s+ (1− Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
)W̌U(p′′)).(50)

(rs + λUλh)tε is the “flow” value of both players’ effort to player U in the tε duration of
time: as U does not experiment, she receives rstε from her own arm; player I experiments
with full resource, hence to player U , good news will arrive with probability λU tε, leading to
a discounted value λh.

Now coming back to the equilibrium with Gradual Revelation Path µ̃̃µ̃µ. Since U is indiffer-
ent between experimenting and not experimenting as long as no revealing and p ∈ (p′′, p′′+ε),
not experimenting is an optimal strategy for U . Hence we have

W̃U(p′′ + ε) = (rs+ λUλh)tε + (1− rtε − λU tε)(
Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
s+ (1− Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
)W̃U(p′′) + o(tε),(51)

61 That is, ˇ̌WU (p′′ + ε) ≥ W̌U (p′′ + ε, µ̌̌µ̌µ(p′′ + ε)).
62 Note with type s−’s new revealing strategy, Y̌ (ε) will be a constant when background belief is in

(p′′, p′′ + ε].
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where we use the fact that during tε duration of time, type s−’s expected effort differs

from 1 with probability Ỹ (0)−Ỹ (ε)

1−Ỹ (ε)
, which is of order tε (since by assumption µ̃̃µ̃µ is absolutely

continuous), causing a difference in U ’s flow payoff during this tε time of second order of tε.
Since µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′), and µ̃̃µ̃µ(p′′) = µ̌̌µ̌µ(p′′), we have Ỹ (0) = Y̌ (0), and Ỹ (ε) >

Y̌ (ε), hence
Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
<
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
.

Recall we also have W̌U(p, µ̌̌µ̌µ) = W̃U(p, µ̃̃µ̃µ) at p = p′′. Therefore, by equations (50) and

(51), we have ˇ̌WU(p′′ + ε) < W̃U(p′′ + ε). As ˇ̌WU(p′′ + ε) ≥ W̌U(p′′ + ε), we also have
W̌U(p′′ + ε) < W̃U(p′′ + ε).

Since this inequality holds for all small ε > 0, we conclude that W̌U(p, µ̌̌µ̌µ) < W̃U(p, µ̃̃µ̃µ) for
p ∈ (p′′, p′′ + ε1), if ε1 small enough.

C.3 Verification (proof of Lemma 4)

As the argument for type s+’s incentive compatibility only depends on whether the stage
is full separation or not, we first analyze his incentive. We then check type s−’s and player
U ’s incentive stage by stage, backwardly.

At the full separation region (p ≤ p∗−2 ), if the state is (p, 1), type s+ has no incentive to
deviate because both him and the uninformed player play the symmetric MPE with public
information s+. If the state is (p, 0), then the uninformed player does not experiment, hence
it is optimal for type s+ to adopt the individually optimal solution.

Before full separation (p > p∗−2 ), type s+’s incentive to follow the prescribed equilibrium
strategy is implied by the following lemma, since in the prescribed equilibrium, there is no
p > p∗−1 such that eI− (p, 0) = 0 and hence no p > p∗−1 such that eI+ (p, 0) = 0.

Lemma 9. Let a strategy profile (eI+, eI−, eU) and a belief system satisfy the following con-
ditions: (i) eI+ is pure; (ii) before fully separating, for any p > p∗−1 such that W I+ (p, 0) =
W I+ (p, µ) and eI+ (p, 0) = 0, we have eI+ (p, µ) = 0; (iii) eU increases in µ; (iv) the belief
system satisfies (11). Then at any state (p, µ) that is not fully separating, type s+ has no
incentive to deviate to effort lower than eI+ (p, µ).

Proof. Let a strategy profile and a belief system satisfy the conditions in Lemma 9. Before
fully separating, as long as good news does not arrive and type s− plays eI+, the informed
agent’s reputation at t, when the time-t background belief is at pt, will be µ̃̃µ̃µ(pt) for some
function µ̃̃µ̃µ.

Suppose Lemma 9 does not hold. That is, there is some p′ such that type s+ finds it
optimal to deviate to a lower effort than equilibrium effort. According to condition (iv), im-
mediately after this deviation type s+’s reputation will be 0, hence the highest continuation
value he can get is W I+ (p′, 0), which is obtained from type s+ playing a best response to
eU(·, 0). Therefore, at p′, W I+ (p′, 0) > W I+ (p′, µ̃̃µ̃µ (p′)). Since W I+ (p, 0) ≤ W I+ (p, µ̃̃µ̃µ (p)) at
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the background belief where full separation occurs, and both W I+ (p, 0) and W I+ (p, µ̃̃µ̃µ (p))
are continuous in p, there exists some p′′ ∈ (0, p′) (before fully separating) such that

W I+ (p′′, 0) = W I+ (p′′, µ̃̃µ̃µ (p′′)), and that dW I+(p′′+,0)
dp

> dW I+(p′′+,µ̃̃µ̃µ(p′′+))
dp

.

Due to condition (iv), that is, a reputation once lost is lost forever, W I+(p, 0) satisfies
the following HJB equation:

rW I+ (p, 0)

= max
e∈[0,1]

e

[
r
(
λI+ (p)h− s

)
− λp (1− p) dW

I+ (p, 0)

dp
+ λI+ (p)

(
λh−W I+ (p, 0)

)]
+eU (p, 0)

[
−λp (1− p) dW

I+ (p, 0)

dp
+ λI+ (p)

(
λh−W I+ (p, 0)

)]
+ rs

W I+(p, µ̃̃µ̃µ) satisfies the following HJB equation:

rW I+ (p, µ̃̃µ̃µ (p))

= eI+ (p, µ̃̃µ̃µ (p))

[
r
(
λI+ (p)h− s

)
− λp (1− p) dW

I+ (p, µ̃̃µ̃µ (p))

dp
+ λI+ (p)

(
λh−W I+ (p, µ̃̃µ̃µ (p))

)]
+eU (p, µ̃̃µ̃µ (p))

[
−λp (1− p) dW

I+ (p, µ̃̃µ̃µ (p))

dp
+ λI+ (p)

(
λh−W I+ (p, µ̃̃µ̃µ (p))

)]
+ rs

If e+(p′′, 0) > 0, then byW I+ (p′′, 0) = W I+ (p′′, µ̃̃µ̃µ (p′′)), and that dW I+(p′′+,0)
dp

> dW I+(p′′+,µ̃̃µ̃µ(p′′+))
dp

,

we must have e+(p′′, µ̃̃µ̃µ) = 1. But these inequalities, together with condition (iii), contradict
with the two HJB equations above. Therefore, e+(p′′, 0) = 0, which implies e+(p′′, µ̃̃µ̃µ) = 0 by

condition (ii). But again, the inequalities W I+ (p′′, 0) = W I+ (p′′, µ̃̃µ̃µ (p′′)), that dW I+(p′′+,0)
dp

>
dW I+(p′′+,µ̃̃µ̃µ(p′′+))

dp
, and condition (iii), contradict with the two HJB equations above.

We now check type s−’s and player U ’s incentive to deviate.

(1) full separation (p ≤ p∗−2 ). The nontrivial sub-case is when p∗+1 < p ≤ p∗−2 , and µ =
µµµo(p).

Type s− has no incentive to deviate because, given the updating rule and that player U will
choose the same action as he does (because they will play the symmetric MPE corresponding
to the information revealed by player I’s action), the tradeoff of working or not he faces is
exactly the same with that a two-player team with public information s− faces: in both
cases, working has the same current flow payoff and twice the “capital gain” as working
alone.Since a two-player team finds it optimal to stop if p < p∗−2 , so does player I of type
s−.

The uninformed player has no incentive to deviate because the informed player already
perfectly reveals his type and both play the symmetric MPE in the symmetric information
game thereafter.

(2) Gradual revelation (p∗−2 < p < pgr).
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The state is along µ̂̂µ̂µ. Note that given player U ’s equilibrium strategy and the belief system,
whatever deviation that player I plans to employ, the state will be on µ̂̂µ̂µ as long as player I
hasn’t revealed himself. Likewise, given player I’s equilibrium strategy, whatever deviation
that player U uses, the state will be on µ̂̂µ̂µ as long as player I hasn’t revealed himself.

We have shown in the previous step that type s−’s value at (p∗−2 , µ) is at most s. Then
in the interval [p∗−2 ,min{p∗−1 , pgr}], given the construction of f , type s− has no incentive to
deviate, and that W I−(p, µ̂̂µ̂µ(p)) = s. In the interval [min{p∗−1 , pgr}, pgr] (if nonempty), player
U ’s effort along µ̂̂µ̂µ is the same as in the symmetric MPE with public information s−, since
type s− is indifferent between experimenting and not experimenting in the symmetric MPE,
he is also indifferent between experimenting (and hence not revealing) and eS− ∈ (0, 1) (and
hence revealing) along µ̂̂µ̂µ in the asymmetric information game.

That the uninformed player has no incentive to deviate along µ̂̂µ̂µ follows from the following
two lemmas.

Lemma 10. Suppose in the candidate equilibrium constructed in Section §??, during gradual
revelation, the uninformed player’s effort is as in equation (??), and that type s−’s revealing
rate y is such that, the associated revealing path µ̂̂µ̂µ is a solution to the ODE problem defined
by (20), (21), and (22). The player U ’s value function during gradual revelation is given by
equation (19).

Proof. By our equilibrium construction, trivially, WU(p∗−2 , µ̂̂µ̂µ(p∗−2 )) satisfies equation (19).
Now suppose that there is some p′ ∈ (p∗−2 , pgr) such that equation (19) does not hold at
p. Without loss of generality, assume WU (p′, µ̂̂µ̂µ) > s + s − λU (p′, µ̂̂µ̂µ)h. Then there must
exist an interval of p, subset of (p∗−2 , pgr), over which WU (p, µ̂̂µ̂µ) > s + s − λU (p, µ̂̂µ̂µ)h, and
dWU (p,µ̂̂µ̂µ)

dp
> −λU (p,µ̂̂µ̂µ)h

dp
. As WU satisfies the HJB equation (17), these two inequalities imply

that WU (p, µ̂̂µ̂µ) < s+ s− λU (p, µ̂̂µ̂µ)h for all p in this interval. A contradiction.

Along µ̂̂µ̂µ, the revealing strategy of type s− guarantees the local incentive of player U , that
is, if µ̂̂µ̂µ is a solution to the ODE problem defined by (20), (21), and (22), and if WU is given
by equation (19) (by Lemma 10), then player U ’s local incentive condition (18) is satisfied.
The following lemma shows that player U does not have a profitable global deviation.

Lemma 11. Suppose the informed player’s strategy and the belief system is as in Section §5,
and that type s−’s revealing rate y is such that, the associated revealing path µ̂̂µ̂µ is a solution
to the ODE problem defined by (20), (21), and (22), then the uninformed player has no
incentive to deviate.

Proof. Suppose player U has some profitable deviation ẽ starting at some state (p′, µ̂̂µ̂µ(p′)),
p′ ∈ (p∗−2 , pgr), that gives her continuation value W̃U(p′, µ̂̂µ̂µ(p′)) > WU(p′, µ̂̂µ̂µ(p′)). W̃U sat-
isfies the HJB equation (17) with eU replaced by her deviating action. Since W̃U ≤
WU at (p∗−2 , µ̂̂µ̂µ(p∗−2 )), there must exist some p′′ ∈ (p∗−2 , p′) such that W̃U (p′′, µ̂̂µ̂µ (p′′)) >

WU (p′′, µ̂̂µ̂µ (p′′)), and dW̃U (p′′,µ̂̂µ̂µ(p′′))
dp

> dWU (p′′,µ̂̂µ̂µ(p′′))
dp

, but these inequalities, together with the

HJB equation (17), imply that W̃U (p′′, µ̂̂µ̂µ (p′′)) < WU (p′′, µ̂̂µ̂µ (p′′)). A contradiction.
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The state is along µµµo. If type s− deviates, whether the deviation starts today or not, he
would either reveals himself, or the state variable jumps on the curve µ̂̂µ̂µ; in both cases, type
s− at most obtains continuation value W S−(p), which is his value of following the equilibrium
strategy. Therefore, he has no incentive to deviate.

(3) full pooling (p > pgr). Type s− has no incentive to deviate: on the one hand, player U
works harder when type s− has not revealed himself than when he has revealed already; on the
other, one optimal continuation strategy of type s− after revelation, that is, experimenting
with full resource for p > pgr, is the same with his equilibrium strategy of not revealing;
since type s− benefits from player U ’s effort and he will have the same continuation value
at pgr whether he deviates now or not, he strictly prefers not to deviate.

The uninformed player has no incentive to deviate because according to Point 4 in Lemma 5,
if player U ’s continuation value at pgr is as specified by equation (19), and that C(pgr, µ̂̂µ̂µ(pgr)) >
0, which is shown by step 1 in Lemma 8, then player U finds it optimal to experiment with
full resource for p > pgr. (Here we replace the p in Lemma 5 by pgr.)

C.4 Dynamics

C.4.1 U ’s belief about the risky project (proof of Proposition 1)

Proposition 1 is a result of Lemma 12 and Lemma 13.

Lemma 12. There exists ã ∈ (1,∞), such that, if a > ã, then dλU (p, µ̂̂µ̂µ (p)) /dp|p=p∗−2 > 0;

if a < ã, then dλU (p, µ̂̂µ̂µ (p)) /dp|p=p∗−2 < 0.

Proof. Let qqq∗+2 : [1,∞) → [0, 1] be defined by qqq∗+2 (a) = 1
1+( 1

q∗2
−1) 1

a

, for a ∈ [1,∞), where

qqq∗+2 (a) refers to type s+’s posterior about the risky project, when type s−’s posterior is q∗2
and the odd ratio is a. Let µ̂̂µ̂µ∗ (a) denote the initial value of µ̂̂µ̂µ at p∗−2 , implied by condition
(21), when the odd ratio is a. (The notations qqq∗+2 and µ̂̂µ̂µ∗ are only used in this proof.)

Using equation (35), (41) (the definition of function D) and (45), we have,
dλU (p+, µ̂̂µ̂µ (p+)) /dp|p=p∗−2 < 0 if and only if at p = p∗−2 ,

λ
(
1− qqq∗+2 (a)

) [W S
q

(
qqq∗+2 (a)

)
qqq∗+2 (a)−

(
wS
(
qqq∗+2 (a)

)
− s
)]

wS
(
qqq∗+2 (a)

)
− s

− λ

µ̂̂µ̂µ∗ (a)

ρg (1− ρb)
ρb − ρg

−
(

1

µ̂̂µ̂µ∗ (a)
− 1

)
λI− (p) > 0. (52)

Define the following functions:

D̂1 (q) ≡ λ (1− q)
(
W S
q (q) q −

(
wS (q)− s

))
wS (q)− s

, (53)

D̂2 (a) ≡ − λ

µ̂̂µ̂µ∗ (a)

1

a− 1
−
(

1

µ̂̂µ̂µ∗ (a)
− 1

)
λq∗2. (54)
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Then the left-hand side of inequality (52) equals to

D̂ (a) ≡ D̂1

(
qqq∗+2 (a)

)
+ D̂2 (a) . (55)

We now show that there is a unique ã ∈ (1,∞), such that D̂ (a) > 0 for a < ã, and D̂ (a) < 0
for a > ã, which completes the proof of Lemma 12. The former statement follows directly
from the two claims below:

Claim 4. D̂ (a) strictly decreases in a.

Claim 5. D̂
(
aS
)
> 0 for the aS such that qqq∗+2

(
aS
)

= qS (or equivalently, p∗−2 = pS+); and

lima→∞ D̂ (a) < 0.

Recall that we construct equilibrium for p∗−2 ≥ pS+, which is equivalent with a ∈ [aS,∞).
By continuity of D̂, Lemma 5 says that there is a threshold ã such that D̂(a) > 0 for
a ∈ (aS, ã), and D̂(a) < 0 for a ∈ (ã,∞).

Proof of Claim 4. If we show D̂1 (q) strictly decreases in q, and D̂2 (a) strictly decreases in
a, then, since qqq∗+2 (a) strictly increases in a, we would have D̂ (a) strictly decreases in a.

(i) D̂1 (q) strictly decreases in q.
Replacing wSq in the expression of D̂1 by equation (43), we have

D̂1 (q) = λ

(
q
((

r
2λ

+ 1
)
λh− s

)
− r

2λ
s

wS (q)− s
−
( r

2λ
+ 1
))

.

Taking derivative with respect to q and rearranging terms, we have

dD̂1 (q)

dq
= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− qwSq (q)

)
+ wSq (q) r

2λ
s

(wS (q)− s)2

= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− (q − q∗2)wSq (q)

)
(wS (q)− s)2

< 0,

where the second inequality uses equality
((

r
2λ

+ 1
)
λh− s

)
q∗2 = r

2λ
s; the third uses the

convexity of wS and that wS(q∗2) = s.
(ii) D̂2 (a) strictly decreases in a.
Recall the definition of D̂2, we have

D̂2 (a) = − λ

µ̂̂µ̂µ∗ (a)

q∗2
qqq∗+2 (a)

a

a− 1
+ λq∗2
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Taking derivative with respect to a, and using the value of µ̂̂µ̂µ∗ (a) (by equation (21)), we have

−1

λ

dD̂2 (a)

da

=
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
+ λhqqq∗+2 (a)−

(
wS
(
qqq∗+2 (a)

)
− s
)
− λh

(
qqq∗+2 (a)− q∗2

)
s− λq∗2h

q∗2(
qqq∗+2 (a)

)2

a

a− 1

dqqq∗+2 (a)

da

−
wS
(
qqq∗+2 (a)

)
− s+ λh

(
qqq∗+2 (a)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (a)

1

(a− 1)2

=
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
−
(
wS
(
qqq∗+2 (a)

)
− s
)

+ λhq∗2
s− λq∗2h

1

a (a− 1)
(1− q∗2)

−
wS
(
qqq∗+2 (a)

)
− s+ λh

(
qqq∗+2 (a)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (a)

1

(a− 1)2

=
(q − q∗2) (a)wSq

(
qqq∗+2 (a)

)
−
(
wS
(
qqq∗+2 (a)

)
− s
)

+ q∗2w
S
q

(
qqq∗+2 (a)

)
+ λhq∗2

s− λq∗2h
1

a (a− 1)
(1− q∗2)

−
wS
(
qqq∗+2 (a)

)
− s+ λh

(
qqq∗+2 (a)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (a)

1

(a− 1)2

Define D̂3 ≡
(
qqq∗+2 (a)− q∗2

)
wSq
(
qqq∗+2 (a)

)
−
(
wS
(
qqq∗+2 (a)

)
− s
)
. Since a−1

a
(1− q∗2) = 1− q∗2

qqq∗+2 (a)

and D̂3 > 0, we have

−1

λ

dD̂2 (a)

da

=
D̂3qqq

∗+
2 (a) /q∗2 + qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
+ λhqqq∗+2 (a)

s− λq∗2h
1

a (a− 1)

q∗2 (1− q∗2)

qqq∗+2 (a)

−
wS
(
qqq∗+2 (a)

)
− s+ λh

(
qqq∗+2 (a)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (a)

1

(a− 1)2

=
1

s− λq∗2h
q∗2

qqq∗+2 (a)

1

(a− 1)2

[(
D̂3
qqq∗+2 (a)

q∗2
+
(
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
+ λhqqq∗+2 (a)

))(
1− q∗2

qqq∗+2 (a)

)

−
(
wS
(
qqq∗+2 (a)

)
− s+ λh

(
qqq∗+2 (a)− q∗2

)) ]

=
1

s− λq∗2h
q∗2

qqq∗+2 (a)

1

(a− 1)2

[
D̂3
qqq∗+2 (a)

q∗2

(
1− q∗2

qqq∗+2 (a)

)
+ D̂3

]
=

1

s− λq∗2h
1

(a− 1)2 D̂3

> 0
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Proof of Claim 5. As a→∞, we have qqq∗+2 (a)→ 1, and lima→∞ µ̂̂µ̂µ
∗ (a) ∈ (0, 1) by the initial

condition. Therefore, as a→∞, we have D̂1 → 0, D̂2 → −
(

lima→∞
1

µ̂̂µ̂µ∗(a)
− 1
)
λq∗2 < 0.

If a is such that qqq∗+2 (a) = qS, then we have µ̂̂µ̂µ∗ (a) = 1 by the initial condition. Therefore

1

λ
D̂
(
qqq∗+2 (a)

)
=

1

λ
D̂1

(
qqq∗+2 (a)

)
− 1

a− 1

=
(
1− qqq∗+2 (a)

) D̂3

wS
(
qqq∗+2 (a)

)
− s

+
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2 −

1

a− 1
.(56)

If we show that

qqq∗+2 (a)wSq
(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2 −

1

a− 1
>

1

a

[
1

a− 1
−
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2

]
,(57)

then we have
qqq∗+2 (a)wSq (qqq∗+2 (a))
wS(qqq∗+2 (a))−s

1−qqq∗+2 (a)

qqq∗+2 (a)
q∗2 − 1

a−1
> 0. This inequality, together with D̂3 > 0 and

equation (56), imply D̂ > 0.

We now show inequality (57). First, by the definition of qqq∗+2 , we have
1−qqq∗+2 (a)

qqq∗+2 (a)
q∗2 =

1
a

(1− q∗2). Then,

qqq∗+2 (a)wSq
(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2 −

1

a− 1

=

((
qqq∗+2 (a)− q∗2

)
wSq
(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

+
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

q∗2
qqq∗+2 (a)

)
1

a
(1− q∗2)− 1

a− 1

=

((
qqq∗+2 (a)− q∗2

)
wSq
(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

+
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2

)
1

a
− 1

a− 1

>

[
1

a− 1
−
qqq∗+2 (a)wSq

(
qqq∗+2 (a)

)
wS
(
qqq∗+2 (a)

)
− s

1− qqq∗+2 (a)

qqq∗+2 (a)
q∗2

]
1

a
.

The last inequality uses
(qqq∗+2 (a)−q∗2)wSq (qqq∗+2 (a))

wS(qqq∗+2 (a))−s
> 1, and 1

a
− 1

a−1
= 1

a(a−1)
.

Lemma 13. For any p ∈ (p∗−2 , pgr) such that dλU (p,µ̂̂µ̂µ)h
dp

= 0, we have d2λU (p,µ̂̂µ̂µ)h
dp2

< 0.

Proof. First, simple algebra gives us equalityB (p, 0) = B (p, µ̂̂µ̂µ)+µ̂̂µ̂µλUµ (p, µ̂̂µ̂µ), and µ̂̂µ̂µλUµ (p, µ̂̂µ̂µ) =
λU (p, µ̂̂µ̂µ)−λI− (p). Recall that qqq− (p) is defined as type s−’s posterior about the risky project
when the background belief is p, and that λI− (p) = qqq− (p)λ.

Suppose there exists some p′ ∈ (p∗−2 , pgr) such that dλU (p,µ̂̂µ̂µ)h
dp

= 0. Taking derivative on

both sides of equality (37) with respect to p, at the p = p′, and applying dλU (p,µ̂̂µ̂µ)h
dp

= 0, we
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have

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[
− λ

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

))
−λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

) dB (p, µ̂̂µ̂µ)

dqqq−

]

Since B (p, µ̂̂µ̂µ) = s+ s− λU (p, µ̂̂µ̂µ)− wS (qqq−), and dλU (p,µ̂̂µ̂µ)h
dp

= 0 at p = p′, we have at p = p′,

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[
− λ

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)
−B (p, µ̂̂µ̂µ)

))
+
λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

λqqq−
(
1− qqq−

)
wSq
(
qqq−
) ]

If p′ ∈ [p∗−2 , p∗−1 ], then wS (qqq−) = s and hence wSq (qqq−) = 0. Apply inequality (46) and

the definition of function D, we have −d2λU (p,µ̂̂µ̂µ)
dp2

|p=p′ < 0.

If p′ ∈ (p∗−1 , pgr], (which is possible only if (p∗−1 , pgr] is nonempty,) then by the fact that
eS−(q) ∈ (0, 1) (that is, in the symmetric MPE under symmetric information, a player is
indifferent between experimenting and not experimenting, given that the other player plays
the MPE strategy), we have

λqqq−
(
1− qqq−

)
wSq
(
qqq−
)

= r
(
λqqq−h− s

)
+ λqqq−

(
λh−W S

(
qqq−
))
.

Using this equation to get rid of wS and wSq , we have

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
λrs+ λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

+
λU (p, µ̂̂µ̂µ)

(
λqqq− − λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

(
r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
))) ]

=
dqqq− (p) /dp

λp (1− p)

[
−λ− λ

U (p, µ̂̂µ̂µ)

1− qqq−

(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
rs

]
(58)

< 0. (59)
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The last inequality uses the fact that the right-hand side of equation (37) equals to 0 when
dλU (p, µ̂̂µ̂µ) /dp = 0 (and some algebra).63

C.4.2 The revealing intensity of type s−

Lemma 14. In the gradual revelation phase, for p ∈ (p∗−2 , p∗−1 ) such that dλU (p, µ̂̂µ̂µ) /dp < 0,
the revealing intensity of the informed player (1− µ̂̂µ̂µ)y (p, µ̂̂µ̂µ) strictly decreases in p.

Proof. Applying equation (15) and U ’s indifference condition (18), we have, in gradual rev-
elation phase,

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

eI+ (p, µ̂̂µ̂µ) + eU (p, µ̂̂µ̂µ)

= r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λp (1− p)hdλU (p, µ̂̂µ̂µ) /dp+ λU (p, µ̂̂µ̂µ)

(
λh− s−

(
s− λU (p, µ̂̂µ̂µ)h

))
(60)

Using equation (37) to replace dλU (p, µ̂̂µ̂µ) /dp, we have

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

eI+ (p, µ̂̂µ̂µ) + eU (p, µ̂̂µ̂µ)

=
(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

) B (p, µ̂̂µ̂µ)

B (p, 0)
(61)

Using equality eI+ (p, µ̂̂µ̂µ) = 1 and rearranging terms, we have

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, 0) =
(
1 + eU (p, µ̂̂µ̂µ)

) (
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

)
For p ∈ (p∗−2 , p∗−1 ), we have eU = f(p) = r(s−λI−(p)h)

λI−(p)(λh−s) − 1; also, B(p, 0) = s − λI− (p)h.
Therefore,

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ) =
r
(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

)
λI− (p) (λh− s)

(62)

From this equation, if dλU/dp ≤ 0, then the left-hand side of equation (62), the revealing
intensity, strictly decreases as p increases.

63 To obtain equality (58), notice that

λU (p, µ̂̂µ̂µ)
(
λqqq− − λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

(
r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
)))

=

(
λqqq− − λU (p, µ̂̂µ̂µ)

)
(1− qqq−)

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)))

+

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2
λqqq− (1− qqq−)

rs

Using the fact that the right-hand side of equation (37) equals to 0 when dλU/dp = 0, the right-hand side
of the equation above equals to

−λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ) +

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2
λqqq− (1− qqq−)

rs.

The equality (58) follows.
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C.4.3 U ’s growing pessimism or growing optimism right before full separation

We here give a more detailed argument than in the main text. We do this in three steps.
Step 1. U ’s continuation MB of experimentation equals her flow continuation value. U ’s

continuation value comes from both players’ efforts, with I’s effort contributing only to the
continuation value whereas her own effort also to the flow value:

r(WU − s)︸ ︷︷ ︸
flow continuation value

= eU [r(λUh− s)︸ ︷︷ ︸
flow MB

+continuation MB] + eI [continuation MB].

Since I takes effort 1 with probability 1 at any state of the gradual revelation phase, and
U ’s total MB is 0 due to her indifference about experimentation, we have

r(WU − s)︸ ︷︷ ︸
flow continuation value

= continuation MB.

Step 2. U ’s continuation value can be approximated (up to first order) by her expected
continuation value if I’s type were public and both players played the symmetric MPE.64 Since
U is indifferent about experimenting and not experimenting during the gradual revelation
phase, we assume that she takes effort 1 during this phase, that is, she matches her effort
with the informed player’s effort. Under this alternative strategy, in case I is of type s+, she
receives the same payoff as in the symmetric MPE (under symmetric information s+). In case
I is of type s−, both players equally share the effort load, which is higher than the single-
player solution and lower than the cooperative solution; hence each player’s continuation
value is between the continuation value corresponding to the symmetric MPE solution and
to the cooperative solution; since both the continuation value and its derivative with respect
to q− coincides under the symmetric MPE solution and the cooperative solution, each player’s
continuation value can be approximated by the symmetric MPE solution, in case I is of type
s−.

Step 3. A drop in q− reduces U ’s flow MB relatively more than it reduces U ’s continuation
MB, whereas a drop in q+ has the reverse effect.

U ’s flow MB is the expectation of her ex post flow MBs, r(λq+h − s) and r(λq−h − s),
which are linear in her ex post posteriors, (that is, I’s posteriors). This means, a mean-
preserving spread (henceforth, MPS) of U ’s belief profile does not change her flow MB.

U ’s continuation MB, as we will show later, equals her flow continuation value r(WU −
s), and can be approximated by the weighted average of her flow continuation values in
the symmetric information benchmark, r(wS(q+) − s) and r(wS(q−) − s), near the end of
the gradual revelation phase. That is, WU − s = µ(wS(q+) − s) + (1 − µ)(wS(q−) − s).
Different from the flow MB function, wS is convex ( from KRC-2005), meaning an MPS of
U ’s belief profile increases her continuation MB. Intuitively, the bigger gap between the ex
post posteriors q+ and q−, the more precise players’ information will be after separation,
hence the lower chance they will use the inferior project, leading to a higher future value to

64That is, U ’s continuation MB can be approximated by µwS(qqq + (p)) + (1− µ)wS(qqq − (p)).
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qU q+q−q̂− q

wS(q)− s

0 1

rise in U ’s
continuation MB
due to MPS

Figure 8: The rise in U ’s continuation MB due to a mean preserving spread

U , and consequently, a higher incentive for U to accelerate experimentation so as to reap
this future value earlier.

A reduction in q− widens the spread between q+ and q− whereas a reduction in q+ narrows
it, resulting in distinct evolution patterns of U ’s flow MB and her continuation MB, if her
total MB were to stay constant. For example, the adjustment — q+ stays constant, q− drops
by dq, and µ rises by dµ to keep U ’s belief about the risky project unchanged — creates an
MPS of U ’s belief profile, whereby it increases her continuation MB without affecting her
flow MB. See Figure 8 for an illustration, in which, qU denotes U ’s (interim) posterior about
the risky project, and q̂− = q− − dq type s−’s posterior after the adjustment; the rise in
her continuation MB due to this MPS is represented by the upward pointing arrow. This
implies, to keep her total MB constant, I’s reputation µ needs to adjust back partially, so
that the newly dropping flow MB neutralizes the rising continuation MB. On the contrary,
the adjustment — q− keeps constant, q+ drops by dq, and µ rises by dµ to keep U ’s belief
unchanged — makes U ’s old belief profile an MPS of this new one, whereby it decreases
her continuation MB, preserving her flow MB. See Figure 9 for an illustration, in which,
q̂+ = q+− dq denotes type s+’s posterior after the adjustment; the drop in U ’s continuation
MB due to this MPS is represented by the downward pointing arrow. Thus, to keep her
total MB constant, µ needs to rise further, so that the newly rising flow MB counterpoises
the dropping continuation MB.
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qU q+q− q̂+ q

wS(q)− s

0 1

drop in U ’s
continuation MB
due to MPS

Figure 9: The drop in U ’s continuation MB due to a mean preserving contraction

C.5 Welfare analysis

C.5.1 Proof of Proposition 1

Depending on the parameters ρb and ρg, both subcases of case 2 can happen: for instance,
consider a < â but sufficiently close to â. If (ρb, ρg) are sufficiently low, player I will start
with a high reputation, implying a short gradual revelation phase, that is, pgr will be close
to p∗−2 . Hence p̃a = pgr, and the first subcase of case 2 occurs. If (ρb, ρg) are sufficiently high,
player I will start with a low reputation, implying a long gradual revelation phase, that is,
pgr will be far from p∗−2 . Hence p̃a < pgr, and the second subcase of case 2 occurs.

To prove Lemma 1, we first derive an HJB equation for ∆W (in Claim 6), and then show
that whenever ∆W = 0 for some p̃ ∈ (p∗−2 , pgr), we must have ∆W > 0 for all p ∈ (p̃, pgr]
(in Claim 7).

Claim 6. During gradual revelation phase, ∆W satisfies HJB equation (73).

We first prove this HJB equation holds and then offers an interpretation of it.

Proof of Claim 6. Rewrite the HJB equations of WU , W I+, W S+, and W S− in the following
way:

r
(
WU (p, µ̂̂µ̂µ)− s

)
= eU (p, µ̂̂µ̂µ) r

[
λU (p, µ̂̂µ̂µ)h− s

]
− (1− µ̂̂µ̂µ) y

(
WU (p, µ̂̂µ̂µ)−WU (p, µ̂̂µ̂µ)

)
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

U (p, µ̂̂µ̂µ)

dp
+ λU (p, µ̂̂µ̂µ)

(
λh− s−

(
WU (p, µ̂̂µ̂µ)− s

))]
.(63)
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This is the same with HJB equation (17), except that we collect the two usual optional value
parts together: the change in value if no revealing and no good news arrives, and the change
in value if no revealing and good news arrives.

r
(
W I+ (p, µ̂̂µ̂µ)− s

)
= r

[
λI+ (p)h− s

]
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

I+ (p, µ̂̂µ̂µ)

dp
+ λI+ (p)

(
λh− s−

(
W I+ (p, µ̂̂µ̂µ)− s

))]
.(64)

r
(
W S+ (p)− s

)
= r

[
λI+ (p)h− s

]
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

S+ (p)

dp
+ λI+ (p)

(
λh− s−

(
W S+ (p)− s

))]
+
(
1− eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

S+ (p)

dp
+ λI+ (p)

(
λh− s−

(
W S+ (p)− s

))]
= r

[
λI+ (p)h− s

]
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

S+ (p)

dp
+ λI+ (p)

(
λh− s−

(
W S+ (p)− s

))]
+

(
1− eU (p, µ̂̂µ̂µ)

)
2

[
W S+ (p)− s−

(
λI+ (p)h− s

)]
. (65)

The first equality is due to the fact that p > pS+, and hence both players experiment with full
resource in the symmetric MPE of the symmetric information game. In the second equality,
we replace the optional value by

[
W S+ (p)− s−

(
λI+ (p)h− s

)]
/2, which is obtained from

the first equality. The term(
1− eU (p, µ̂̂µ̂µ)

) [
W S+ (p)− s−

(
λI+ (p)h− s

)]
can be interpreted as the welfare loss to both players in case player I is type s+, caused by
the lack of effort of player U (in the equilibrium of asymmetric information game, compared
with the symmetric MPE in the symmetric information game).

r
(
W S− (p)− s

)
= r

[
λI− (p)h− s

]
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

S− (p)

dp
+ λI− (p)

(
λh− s−

(
W S− (p)− s

))]
. (66)

Writing W S− in this way, we are saying that, in the symmetric information game with public
signal s−, U ’s payoff is obtained by her experimenting with full resource during p ∈ (p∗−2 , pgr)
and her teammate experimenting with resource eU (p, µ̂̂µ̂µ). (Note the role switching between
the players.) We may call this a pseudo-equilibrium (as her teammate does not find it
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optimal to play like this). The reason we interpret W S− in this way is because, the sum of
effort will be the same in the equilibrium constructed for the asymmetric information game,
and in this pseudo-equilibrium we just specified in the symmetric information game with
public signal s−. This means that in the asymmetric information game, player U enjoys
an additional flow payoff r

(
1− eU (p, µ̂̂µ̂µ)

) (
s− λI− (p)h

)
due to effort saving in case I has

signal s−, compared with the symmetric information case.
We now combine these four HJB equations to derive an HJB equation of ∆W .
From equation (24), and replacing µµµo by µ̂̂µ̂µ, we have

d∆W (p, µ̂̂µ̂µ)

dp
=

(
dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dW S+ (p)

dp
− (1− µ̂̂µ̂µ)

dW S− (p)

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ
µ̂̂µ̂µ
(
W I+ (p, µ̂̂µ̂µ)− 2W S+ (p) +W S− (p)

)
(67)

=

(
dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dW S+ (p)

dp
− (1− µ̂̂µ̂µ)

dW S− (p)

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ

(
∆W (p, µ̂̂µ̂µ)−WU (p, µ̂̂µ̂µ) +W S− (p)

)
(68)

Using equation (??), the four HJB equations (63) to (66), we obtain an HJB equation for
∆W (p, µ̂̂µ̂µ), with a term(

dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dW S+ (p)

dp
− (1− µ̂̂µ̂µ)

dW S− (p)

dp

)
.

We then apply equalities (67) and (68) to get rid of this term, and apply equations (15) and

(38) to get rid of µ̂̂
µ̂µp
µ̂̂µ̂µ

. Finally, rearranging terms, we would obtain the HJB equation (73).

We now interpret the HJB equation of ∆W . To derive a tractable HJB equation of
∆W , we manipulate the value functions (W S− in particular), so that they have a common
component 1 + eU (p, µ̂̂µ̂µ) in the optional values. After this manipulation, the effort levels can
be interpreted as: in the equilibrium constructed for the asymmetric information game, total
effort is 1 + eU (p, µ̂̂µ̂µ), and U ’s effort is eU (p, µ̂̂µ̂µ); in the symmetric information game with
public information s+, total effort is 2, and U ’s effort is 1; in the symmetric information game
with public information s−, total effort is 1 + eU (p, µ̂̂µ̂µ), and U ’s effort is 1. Therefore, in the
asymmetric information equilibrium, compared with the symmetric information benchmark,
total effort is reduced by 1−eU (p, µ̂̂µ̂µ) in case player I has signal s−, which causes a reduction
in the sum of optional value

(
1− eU (p, µ̂̂µ̂µ)

) [
W S+ (p)− s−

(
λI+ (p)h− s

)]
(see derivation

of HJB equation W S+ in the proof above); also, in the asymmetric information equilibrium,
U ’s effort is reduced by 1− eU (p, µ̂̂µ̂µ) (for both cases of signals), saving experimentation cost(
1− eU (p, µ̂̂µ̂µ)

) [
s− λU (p, µ̂̂µ̂µ)h

]
. Theses two terms are the first line on the right-hand side

of equation (73), resembling the “flow payoff” in a usual HJB equation. The second line
on the right-hand side of equation (73), the usual optional value of keeping asymmetric
information, is easy to explain: in case good news does not arrive and type s− does not
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reveal, ∆W changes by d∆W (p,µ̂̂µ̂µ)
dp

dp; with probability
(
1 + eU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ) dt, good news

arrives, and ∆W jumps to 0; with probability (1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ) dt, type s− reveals his type,
and and ∆W jumps to 0 also. In this interpretation, it is important to notice that in the
definition of ∆W , type s−’s welfare gain or loss is cancel out, hence such manipulation does
not affect type s−’s welfare gain or loss.

Rearranging terms, we have(
1 + eU (p, µ̂̂µ̂µ)

)
λp (1− p) d∆W (p, µ̂̂µ̂µ)

dp

= −
[
r +

(
1 + eU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ) + (1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)

]
∆W (p, µ̂̂µ̂µ)

−
(
1− eU (p, µ̂̂µ̂µ)

)
r
[
µ̂̂µ̂µ
(
W S+ (p)− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
. (69)

We will show that

Claim 7. During gradual revelation phase, if there is some p̃ such that ∆W (p̃, µ̂̂µ̂µ) = 0, and
d∆W (p̃,µ̂̂µ̂µ)

dp
≥ 0, then ∆W (p, µ̂̂µ̂µ) > 0 for all p ∈ (p̃, pgr].

Proof of Claim 7. At ∆W (p, µ̂̂µ̂µ) = 0, by using WU (p, µ̂̂µ̂µ) = s+ s− λU (p, µ̂̂µ̂µ)h, we also have

−
[
µ̂̂µ̂µ
(
W S+ (p)− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
= µ̂̂µ̂µ

(
W S+ (p)−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
+ (1− µ̂̂µ̂µ)

(
W S− (p)− s

)
(70)

To prove Claim 7, it is sufficient to show that if the right-hand side of equation (70) is
positive at some p̃, then it is positive for all p ∈ (p̃, pgr].

First, d
(
W S+ (p)−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
/dp > 0. This is because, W S+ (p) and

W I+ (p, µ̂̂µ̂µ), when taken as functions of type s+’s posterior qqq+(p), have derivative w.r.t qqq+(p)
in [0, λh]. Hence the derivative of W S+ (p)−W I+ (p, µ̂̂µ̂µ), when taken as function qqq+(p), w.r.t.
qqq+(p), is in [−λh, λh]. Since the derivative of λI+ (p)h, when taken as function qqq+(p), w.r.t.
qqq+(p), is λh, we have that

(
W S+ (p)−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
, when taken as function

of qqq+(p), has positive derivative w.r.t. qqq+(p). As qqq+(p) strictly increases in p during gradual
revelation phase, we have d

(
W S+ (p)−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
/dp > 0

Second, the right-hand side of equation (70) is strictly increasing in p whenever it is 0.
This is because if at p where it is 0, we have

(
W S+ (p)− s−

(
λI+ (p)h− s

))
≤ 0. As µ̂̂µ̂µ

strictly decreases in p by Proposition 1, and W S− strictly increases in p, the right-hand side
of equation (70) is strictly increasing at such p’s.

Therefore, if type s+’s true posterior is above the myopic threshold, then asymmetric
information improves welfare. The intuition is the following. In the gradual revelation phase,
right before fully separating, U ’s gain (per unit of time) from asymmetric information in case
I holding signal s−, due to the team’s high effort, is

reU(λI−h− s) + (1 + eU)(λh− s),

which, by applying the formula for eU , equals

r(1− eU)(s− λI−h).
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The team’s loss (per unit of time) from asymmetric information in case I holding signal s+,
caused by U ’s low effort, is

r(1− eU)[(λI−h− s) + (W S+ − s− (λI+h− s)),

where the first part in the square bracket is U ’s forgone flow benefit per unit saved effort by
U , and the second part is the team’s forgone optional value per unit saved effort by U .

Hence the team’s net gain from asymmetric information right before fully separating,
equals

r(1− eU)[(s− λUh)− µ(W S+ − s− (λI+h− s)),

which is the difference between U ’s expected flow gain from her saved effort and the loss
of the team’s optional value in case of s+ due to U ’s saved effort. During gradual reve-
lation phase, U ’s expected flow gain from experimentation also equals the required return
r(WU − s), which, right before fully separating, comes only from the required return in case
the risky project being good weighted by its probability, rµ(W S+ − s).65 Therefore, the
team’s net gain per unit of U ’s saved effort from asymmetric information equals difference
between the required return in case of s+ and the optional value, which is the flow gain from
experimentation in case of s+ weighted by its probability µ:

rµ(λI+h− s).

C.5.2 Welfare analysis in the pooling phase

Once we know the sign of ∆W (p, µ̂̂µ̂µ) at pgr, we would know the sign of ∆W (p, µ̂̂µ̂µ) at the full
pooling Phase, that is, for p ∈ (pgr, 1), because the two have the same sign. The intuition
is simple; since during full pooling Phase, both players experiment in the same manner
as in the symmetric MPE of the symmetric information game, hence the material payoff
collected during the full pooling Phase is the same as in the symmetric MPE of the symmetric
information game (for the corresponding posteriors), implying that whether asymmetric
information improves welfare depends solely on the continuation value of ∆W (p, µ̂̂µ̂µ) at pgr.

From Lemma 1 and the above argument, we arrive at the following corollary:

Corollary 1. There exists â ∈ (aS,∞) such that

1. If a ≥ â, then ∆W (p, µ̂̂µ̂µ) > 0 over (p∗−2 , 1).

2. If a < â, and

(a) if there exists p̃a ∈ (p∗−2 , pgr) such that ∆W (p̃a, µ̂̂µ̂µ) = 0, then ∆W (p, µ̂̂µ̂µ) < 0 over
(p∗−2 , p̃a), and ∆W (p, µ̂̂µ̂µ) > 0 over (p̃a, 1);

(b) otherwise, ∆W (p, µ̂̂µ̂µ) < 0 over (p∗−2 , 1).

65This is obtained from the initial condition (21).
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D Further Intuition for Welfare Analysis

As is discussed in the Welfare Analysis section of the main text, Proposition 3 also
conveys two other messages. We first give a rough intuition, and then develop it in detail.

First, if asymmetric information improves ex ante total welfare at some background belief
p′, then so does it at background beliefs higher than p′. This is because the flow part of
∆W strictly increases in the background belief when it is negative, meaning that if ∆W is
positive at some background belief p′, then it remains its sign over (p′, 1). In short, ∆W
crosses 0 at most once over (p∗−2 , 1).

Second, if right before fully separating, type s+’s true posterior is at his myopic threshold,
then asymmetric information improves ex ante total welfare at all states. This is because if
a ≥ aM , then asymmetric information improves ex ante total welfare for a small interval of
time before full separation (or equivalently, over some right neighborhood of p∗−2 ), and hence
the same is true at all background beliefs, combining the second point.

We now give detailed intuition. As is discussed right before Proposition 3, we only need
to analyze welfare over the interval (p∗−2 , pS−]. Because ∆W evolves differently in sub-case
[pgr, p

S−] (in the full pooling Phase) and in sub-case (p∗−2 , pgr) (in the gradual revelation
phase), we analyze each separately, starting from the easier one, the former sub-case.

Step 1. ∆W crosses 0 at most once over [pgr, p
S−].

We only focus on the case when pgr ≥ p∗−1 , which means in the symmetric MPE with s−
being public, both players allocate interior resource to the risky project: eS− ∈ (0, 1) over
[pgr, p

S−]. Analysis for the other case, pgr < p∗−1 , is qualitatively the same.
Table 1 presents players’ efforts in each setup for background beliefs in this interval.

Asym Info Sym Info with s+ Sym Info with s−
U ’s effort 1 1 eS−

s+’s effort 1 1
s−’s effort 1 eS−

total effort 2 2 2eS−

Table 1: Efforts over [pgr, p
S−] in two info setups

We now heuristically explain ∆W satisfies the following HJB equation over [pgr, p
S−]:

r∆W (p) = 2r(1− µµµo)
(
1− eS− (p)

) (
s− λI− (p)h

)
+2

[
−λp (1− p) d∆W (p)

dp
− λU (p,µµµo) ∆W (p)

]
. (71)

As can been seen from Table 1, both players experiment as they would do in the symmetric
information setup with s+ public, and more than they would do with s− public. Therefore,
the required return to the team by keeping I’s signal private, includes two usual optional
value terms on the second line of equation (71): a change of value due to the drop of
background belief in case good news does not arrive, and a change of value by an amount
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−∆W in case good news arrives (because ∆W jumps to 0 should this happen) times the
expected arriving rate (per unit of effort and time) λU . On top of these two terms, the
required return to the team includes an additional gain

2r(1− µµµo(p0))
(
1− eS− (p)

) (
s− λI− (p)h

)
per unit of time, generated by the extra amount of effort (1 − eS−) put by each player,
compared with that in the symmetric MPE with s− public. For ease of explanation, we call
this term the “quasi-flow”, where “quasi” is used because this extra gain contains both flow
and optional value.

Since this “quasi-flow” is strictly positive over [pgr, p
S−), using backward induction, if

∆W is 0 at some p′ ∈ [pgr, p
S−), ∆W would be strictly positive over (p′, pS−].

Step 2. ∆W crosses 0 at most once over (p∗−2 , pgr]; ∆W > 0 over (p∗−2 , pgr] if and only
if a ≥ aM .

Over (p∗−2 , pgr], in the asymmetric information game, type s− is indifferent between re-
vealing and not revealing, hence his continuation value are the same in both information
setups. ∆W (p0) can thus be written as

∆W (p0) = [WU(p0,µµµ
o)− µµµoW S+(p0)− (1− µµµo)W S−(p0)] + µµµo[W S+(p0)−W I+(p0,µµµ

o)], (72)

and be interpreted as the difference between U ’s gain from asymmetric information (the
term in the first square brackets) and type s+’s loss from asymmetric information (the term
in the second). Because the initial state (p0,µµµ

o) jumps immediately to (p0, µ̂̂µ̂µ) right after
time 0 conditional on non-revealing, it is more convenient to work with the “ex ante” welfare
gain after the jump, denoted by ∆W (p, µ̂̂µ̂µ) for p = p0, which equals the right-hand side of
equation (72) with (p0,µµµ

o) replaced by (p, µ̂̂µ̂µ). It is legitimate to study ∆W (·, µ̂̂µ̂µ) rather than
∆W (·) because ∆W (p0) is (strictly) positive if and only if ∆W (p0, µ̂̂µ̂µ) is (strictly) positive.

We now explain heuristically that ∆W (p, µ̂̂µ̂µ) satisfies the following HJB equation:

r∆W (p, µ̂̂µ̂µ)

= −r
(
1− eU (p, µ̂̂µ̂µ)

) [
µ̂̂µ̂µ
(
W S+ (p)− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
+
(
1 + eU (p, µ̂̂µ̂µ)

) [
−λp (1− p) d∆W (p, µ̂̂µ̂µ)

dp
− λU (p, µ̂̂µ̂µ) ∆W (p, µ̂̂µ̂µ)

]
− (1− µ̂̂µ̂µ) y∆W (p, µ̂̂µ̂µ) .(73)

To understand this HJB equation, it helps to reinterpret ∆W (·, µ̂̂µ̂µ) in the following way.
First, in the symmetric information game with s− public, over background beliefs (p∗−2 , pgr), if
player U plays with an artificial player who plays eU (·, µ̂̂µ̂µ (·)) at the corresponding background
beliefs, and U herself experiments with full resource, then U ’s continuation value would be
W S−. This is so because player U in this artificial setup is in exactly the same situation as
type s− is in the gradual revelation phase (over (p∗−2 , pgr)) in the asymmetric information
game, and type s− receives continuation value W S− as he is indifferent between revealing
and not revealing (by fully experimenting) when his teammate plays the equilibrium strategy
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eU (·, µ̂̂µ̂µ (·)).66 After this reinterpretation, we present in Table 2 players’ efforts in the two
information setups:

Asym Info Sym Info with s+ Sym Info with s−
U ’s effort eU 1 1
s+’s effort 1 1

s−’s (pseudo) effort 1 eU

total effort 1 + eU 2 1 + eU

Table 2: Efforts over [p∗−2 , pgr] in two info setups

Combining HJB equation (73) and Table 2, we see the second line of equation (73)
includes three optional value terms to the team by keeping I’s signal private; the first two
terms are the same as that in the previous sub-case, p ∈ [pgr, p

S−], and the third term exists
due to the fact that in case type s− reveals, which happens with probability (1 − µ̂̂µ̂µ)y per
unit of time, ∆W jumps to 0. On top of these optional value terms, the required return
(to the team by keeping I’s signal private) includes an additional “quasi-flow” term, on the
first line of the right-hand side of equation (73). We now explain this term. From Table 2,
compared with symmetric information, in the asymmetric information game, at any instant,

• U works less by (1− eU), saving her flow experimentation cost

r(1− eU)(s− λUh);

• s+ works in the same manner, and hence does not experience any flow gain or loss;

• In case I holds signal s+, due to a lower total effort, the team loses optional value

r(1− eU)[(λI−h− s) + (W S+ − s− (λI+h− s))];

in case I holds signal s−, the team does not experience any optional value gain or loss
since total efforts are the same in both information setups.

Summing over these terms together, the “quasi-flow” equals

r
(
1− eU

) [
s− λU (p, µ̂̂µ̂µ)h− µ̂̂µ̂µ

(
W S+ (p)− s−

(
λI+ (p)h− s

))]
Let’s call the terms in the square brackets as the “quasi-flow” per unit of saved effort. It has
the following two properties, each of which sheds light on the implication for welfare.

First, the “quasi-flow” per unit of saved effort crosses the line 0 at most once over
(p∗−2 , pgr), because it is increasing in p whenever it is negative. Hence ∆W remains positive
for p > p′ if it is positive at some p′, during the gradual revelation phase, if we use backward
induction.

66That is, in the symmetric information game with s− public, by swapping the roles player U and type s−
play in the asymmetric information setup, U ’s continuation value (in the symmetric information game with
public information s−) must equal type s−’s in the asymmetric information game.
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Second, the “quasi-flow” per unit of saved effort is positive at p∗−2 if and only if the odds
ratio is larger than aM . At p∗−2 , right before fully separating, U ’s continuation value relative
to the safe project, s−λU (p, µ̂̂µ̂µ)h, equals µ̂̂µ̂µ

(
W S+ (p)− s

)
, her continuation value relative to

the safe project in case I is of type s+ weighted by its probability. Hence the “quasi-flow” per
unit of saved effort equals µ̂̂µ̂µ

(
λI+ (p)h− s

)
, which is type s+’s flow experimentation payoff

weighted by I’s reputation, and is positive if and only if a ≥ aM . Using the first property, we
conclude that ∆W is positive during the Gradual Revelation Phase if and only if a ≥ aM .

Step 3. Combining the analysis in the previous two steps, we see that if asymmetric
information improves ex ante total welfare at some background belief p′, then so does it at
background beliefs higher than p′, and that asymmetric information improves ex ante total
welfare at p∗−2 if and only if a ≥ aM . Therefore, we’ve explained the last two messages
conveyed by Proposition 3.

E Other Equilibria

E.1 Proof of Claim 1

Following the discussion right above Claim 1, we have, if a > ā, then I’s continuation
value at p∗−2 is his continuation value in the symmetric MPE with his private information
being public: W I+(p, µ) = wS(qqq+(p)), and W I−(p, µ) = wS(qqq−(p)) (= s), at p = p∗−2 , and
µ > 0.

Let µ̂̂µ̂µ : (p∗−2 , pgr) → [0, 1] be the gradual revelation path in the constructed MPE. And
denote U ’s effort during the rewarding region of the gradual revelation path as f(p). Note
that, given an MPE that coincides with the constructed MPE over background beliefs [p∗−2 , p],
if I’s reputation at p is fixed, then type s+ strictly prefers to experiment over [p, p + dp],
whereas type s− strictly prefers not to so over the rewarding region or over the non-responding
region if the uninformed player’s effort is strictly higher than eS(qqq−); over [p, p + dp], the
uninformed player strictly prefers to experiment for µ > µ̂̂µ̂µ, and be willing to experiment at
µ < µ̂̂µ̂µ only if the informed player’s equilibrium effort strictly lower than 1. [Recall again
that players’ current efforts are strategic substitutes; the uninformed player is willing to
experiment at lower beliefs only if the informed player’s effort is lower, before separating].

We will use backward induction to show that, in any MPE, if the equilibrium strategies
over [p∗−2 , p] is the same as in the constructed MPE, then the equilibrium strategy over
[p, p+ dp] in the former MPE will be the same as in the constructed MPE.

Proof. Note that in the constructed MPE, µ̂̂µ̂µ is the borderline such that, if I’s effort is 1,
then U strictly prefers to experiment if the state is above it, and strictly prefers not to if the
state is below it, and is indifferent if the state is on this curve. Hence below this curve, U is
willing to experiment only if I’s effort is lower than 1.

Consider an MPE of the asymmetric information game, and denote the equilibrium effort
strategies of the uninformed player and of type s+ as ẽU , ẽI+. Let p̃ be the infimum over
[p∗−2 , pgr) such that equilibrium strategies differ from the constructed MPE.
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(1) If there is some µ < µ̂̂µ̂µ such that the equilibrium strategies differ from the constructed
MPE over [p̃, p̃+ dp], then let µ̃ be such that the averaged uninformed player’s effort is the
lowest over [p̃, p̃ + dp]. For type s− to mimic type s+, we must have either, ẽU/ẽI+ ≥ f(p)
over the rewarding region, or ẽU ≥ eS(qqq−(p)) over the non-responding region, both requiring
ẽI+ < 1 (otherwise U would strictly prefer not to experiment, given that µ is low). If I
takes action ẽI+, then at p̃, he will end up at state (p̃, µ̂̂µ̂µ) (since the equilibrium over [p∗−2 , p̃]
coincides with the constructed MPE). Now consider I deviating to effort 1 at reputation µ̃
and over the interval (p̃, p̃+dp). Type s+ strictly benefits from such a deviation as long as he
does not get a perfect bad reputation: he obviously gains if his reputation reaches above µ̂̂µ̂µ; if
he gets a reputation below µ̂̂µ̂µ (but still positive), then at p̃ his reputation immediately jumps
upward to µ̂̂µ̂µ after taking his equilibrium strategy ẽI+(= 1), hence he also benefits. But type
s− strictly loses if his reputation does not change (hence jumps upward to µ̂̂µ̂µ after taking
action ẽI+(= 1) at p̃). That is, the set of reputation making type s+ strictly benefit from
such a deviation is strictly larger than the set of reputation making type s− weakly benefit
from it. Therefore, by D1, after such a deviation, I should receive a perfect reputation; but
this suggests that type s− strictly prefers to deviate to effort 1 over (p̃, p̃+ dp) at reputation
µ̃.

(2) If the equilibrium strategies differ from the constructed MPE over [p̃, p̃+ dp], only at
reputations µ ≥ µ̂̂µ̂µ, which is possible only if ẽI+ < 1 and ẽU = 1. Consider I deviating to
effort 1 at such a reputation µ, over the interval (p̂, p̂ + dp). Then type s+ strictly benefits
from such a deviation as long as he receives a reputation weakly above µ, whereas type s−
strictly loses if he gets a reputation weakly below µ; therefore, the set of reputation making
type s+ strictly benefit from such a deviation is strictly larger than the set of reputation
making type s− weakly benefit from it. By D1, after such a deviation, I should receive a
perfect reputation; but this suggests that type s− strictly prefers to deviate to effort 1 over
(p̃, p̃+ dp) at reputation µ.

Therefore, any MPE satisfying D1 should coincide with the constructed MPE over
[p∗−2 , pgr] (the gradual revelation region); that such MPE coincides with the constructed
MPE over the pooling region follows similar steps.
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