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Abstract

We study a dynamic, decentralized exchange economy with aggregate uncertainty about
the relative scarcity of a commodity. We characterize price discovery and show how
traders gradually learn about the state of the market through equilibrium actions. Such
learning leads to equilibrium outcomes that are approximately competitive when the
frictions are small. We derive equilibrium price and trading patterns related to learning,
experimentation, and regret.

1 Introduction

Uncertainty about supply and demand is common, especially in decentralized markets. La-

bor markets, over-the-counter asset markets, and housing markets are examples where the

market conditions may not be fully known to the market participants. This uncertainty has

implications for agents’behavior: the agents may spend time experimenting with offers un-

likely to be accepted, they may employ strategies to learn from market outcomes, and they

may be more accommodating after being in the market for a longer time without trading.

These patterns of experimentation, learning, and accommodation over time– while common

in real-life markets– cannot be captured by search models in which the aggregate supply and

demand conditions are known by the agents in the market.

We introduce a model in which no individual trader knows the relative scarcity of the

good being traded. Our model builds on standard frictional search-and-bargaining models in

the tradition of Mortensen (1982). These models assume that the agents know the market
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conditions, while we assume that the agents do not. First, we analyze the trade and learning

patterns that emerge under market-level uncertainty. Second, we ask whether the traders

eventually learn the aggregate characteristics and whether the prices accurately reflect relative

scarcity when the frictions are small.

By studying those questions, we contribute to equilibrium search theory, a branch of the

literature in which both sides of the market make strategic decisions. First, we construct a

“full-trade”equilibrium. The identified equilibrium allows for a detailed analysis of trading

strategies under market uncertainty in our model. We relate these strategies to the well-

known winner’s curse and loser’s curse that feature prominently in auction theory. Second,

we study the conditions under which the equilibrium price reflects market conditions; that

is, conditions under which information is aggregated.

The literature on dynamic matching and bargaining games, pioneered by Rubinstein and

Wolinsky (1985) and Gale (1987), addresses the question of how prices are formed in decen-

tralized markets and whether these prices are Walrasian. Existing models, however, assume

that market demand and supply are common knowledge among traders. This assumption

is restrictive because markets have been advocated over central planning precisely on the

grounds of the markets’supposed ability to “discover”the equilibrium prices by eliciting and

aggregating information that is dispersed in the economy; see Hayek (1945).

Beyond the theoretical importance, the question of whether markets aggregate informa-

tion has implications for policies that are intended to increase the transparency of markets,

to remove insider information, or to centralize markets to decrease informational frictions;

see, for example, the discussion of benchmarks for increasing transparency in search markets

in Duffi e, Dworczak, and Zhu (2016). The main policy implication of our work, however, is

that decentralized markets may work reasonably well in achieving market clearance even in

the presence of aggregate uncertainty, at least for small frictions. This was not immediately

evident from existing work on decentralized markets, especially given negative results for

related problems in the literature; see below.

As an illustration of the setting we have in mind, consider a bidder on eBay who seeks

to purchase a consumer good. eBay is a decentralized market but it still has a well-defined

trading mechanism that is close to our model. When bidding on a particular item, a bidder

shades her bid below her true valuation to account for the expected continuation value (wait-

ing for another auction). Waiting costs give the current seller the market power to increase

his reserve prices. Conventional search theory reflects these considerations.

However, there is evidence that is not consistent with buyers knowing aggregate market

conditions. Juda and Parkes (2006) study the eBay market for a specific Dell monitor. They

find that “[a]mong the 508 bidders that won exactly one monitor and participated in multiple
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auctions, 201 (40%) paid more than $10 more than the closing price of another auction in

which they bid, paying on average $35 more (standard deviation $21) than the closing price

of the cheapest auction in which they bid but did not win”(emphasis theirs). This piece of

evidence shows not only that there is considerable price dispersion in that market but also

that buyers do not always know the “going price”of the object. In fact, a bidder may later

regret not having been more aggressive before. This is reflected in dynamic bid patterns as

well: “A simple regression analysis shows that bidders tend to submit maximal bids to an

auction that are $1.22 higher after spending twice as much time in the system, as well as bids

that are $0.27 higher in each subsequent auction.”

These observations are hard to reconcile with models of conventional search theory where

buyers fully know market conditions from the outset.1 However, they are consistent with an

environment with aggregate uncertainty where buyers need to learn the market conditions.

We develop a model to study markets with aggregate uncertainty. The matching tech-

nology and the bargaining protocol are adopted from Satterthwaite and Shneyerov (2008).

In every period, a continuum of buyers and sellers arrives at the market. All buyers are

randomly matched to the sellers, resulting in a random number of buyers who are matched

with each seller. Each seller conducts a first-price sealed-bid auction with a secret reserve

price.2 Successful buyers and sellers leave the economy, and unsuccessful traders leave the

market with some exogenous exit rate; otherwise, they remain in the market to be rematched

in the next period. The exit rate acts similar to a discount factor: it makes waiting costly

and is interpreted as the “friction”of trade.

The defining feature of our model is uncertainty about a binary state of nature (high or

low) similarly to Wolinsky (1990). The realized state is unknown to the traders and does

not change over time. The state of nature determines the relative scarcity of the good. The

mass of incoming buyers is larger in the high state and smaller in the low state, whereas

the mass of incoming sellers is independent of the state of nature. The larger the mass of

entering buyers relative to the mass of entering sellers, the scarcer the good. Every trader

receives a noisy signal about the state of the world upon arrival. Moreover, at the end of the

period, those who did not trade obtain additional information regarding the state because

they draw an inference from the fact that their respective bids or reserve price lost. Feedback

is otherwise minimal: traders do not observe the reserve price or bids after the auction. We

concentrate on steady-state equilibria that are monotone in the beliefs of the agents: a buyer

who attaches a higher probability to the high state bids more, and a seller who attaches a

1 In fact, based on insights from conventional search theory, Juda and Parkes (2006) conclude that these
observations suggest that buyers make mistakes.

2The auction protocol captures that there often is some degree of direct competition and helps with the
analysis; see Section 4.4.
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higher probability to the high state sets a higher reserve price.

We show that the buyers shade their bids to account for the opportunity cost of foregone

continuation payoffs. Moreover, although the consumption value of the good is known, the

fact that continuation payoffs depend on the unknown common state of nature makes the

buyers’ preferences interdependent and introduces an endogenous common value element.

The resulting winner’s curse leads to further bid shading: winning an auction implies that,

on average, fewer bidders participate and that the participating bidders are more optimistic

about their continuation payoff.3 Therefore, the winner’s curse implies a lower value for win-

ning the good than was expected before winning. Offsetting the winner’s curse is the loser’s

curse. The role of the loser’s curse for information aggregation in large double auctions was

identified by Pesendorfer and Swinkels (1997). In our model, losing an auction implies that,

on average, more bidders participate and that the participating bidders are more pessimistic

about their continuation payoffs. The loser’s curse implies that bidders become more pes-

simistic and raise their bids after repeated losses over time.4

The behavior of the sellers is quite different: after a seller has not been able to transact

for a short period of time, he lowers his reserve price, believing that the state is most likely

to be low. The reason for the quick concession is that the pivotal conditioning event (when

calculating the winner’s curse effect) is the event when the largest bid is equal to a certain

reserve price. Conditioning on this event tends to decrease the probability of the high state.

An interesting illustration of this observation comes when we identify full-trade equilibria

where the sellers accept all equilibrium bids.

We are particularly interested in the equilibrium outcomes when the exogenous exit rate

is small, which is interpreted as the frictionless limit of the decentralized market. We show

that the limit outcome approximates the Walrasian outcome relative to the realized aggregate

state of the market in many ways but not fully. First, we show that the equilibrium trading

probabilities are competitive in the limit; that is, the short side of the market trades almost

surely in the limit. Moreover, if the realized state is such that the mass of incoming buyers

exceeds the mass of incoming sellers, the resulting limit price at which trade takes place is

equal to the buyers’willingness to pay; that is, the price is competitive in the limit. However,

if in the low state the mass of incoming buyers is smaller than the mass of incoming sellers

and vice versa in the high state, then the equilibrium price may be higher than the seller’s

costs in the low state; that is, there are equilibria with noncompetitive limits.

We introduce an intuitive refinement, the refinement of monotone beliefs in Section 6.

3Conditional on winning, the buyers also learn from the fact that the seller’s reservation price was lower
than the accepted bid. This learning pattern reinforces the winner’s curse, as sellers set low reserve prices
when the state is likely to be low.

4Thus, the loser’s curse refers to the effect of the learning dynamics over time, whereas the winner’s curse
refers to bid shading in each period.
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This refinement requires off-equilibrium beliefs to satisfy that a higher winning bid indicates

that the state of the world is high with a larger probability. Under this refinement, we show

that the equilibrium price is competitive in the limit even if sellers outnumber buyers.

In Section 2, we discuss our contribution to the literature. In Section 3, we introduce

the model. In Section 4, we introduce a class of full-trade equilibria. We show that such

equilibria exist and use these equilibria to discuss and illustrate our main points. In Section

5, we characterize all equilibria for small frictions. In Section 6, we introduce the refinement

of monotone beliefs and show that, with this refinement, all equilibria become competitive for

small frictions. In Section 7, we provide a discussion of our other assumptions, applications,

and policy implications. The Appendix contains the proofs of the characterization results

from Sections 5 and 6. A supplementary online Appendix contains the proofs of all results

about full-trade equilibria from Section 4.

2 Contribution to the Literature

We contribute to research that studies the foundations for general equilibrium through the

analysis of dynamic matching and bargaining games, which was initiated by Rubinstein and

Wolinsky (1985) and Gale (1987).5 A central question is whether a fully specified “decen-

tralized”trading institution leads to outcomes that are competitive when trade frictions are

small. Well-known negative results by Diamond (1971) and Rubinstein and Wolinsky (1985)

have demonstrated that this question is not trivial.

In existing dynamic matching and bargaining models, market demand and supply are

known. Thus, each market participant can individually compute the market-clearing price

before trading. The absence of aggregate uncertainty is a substantial restriction for at least

two reasons. First, assuming that all participants know the aggregate market conditions is

unrealistic in many markets. Second, price discovery has been emphasized as an integral

function of markets. Our model allows us to investigate whether and under which conditions

decentralized markets can serve this function.

There is a related strand of literature on consumer search, some of which considers uncer-

tainty on the buyers’side; see, for example, Benabou and Gertner (1993), Dana (1994), and

Janssen and Shelegia (2015). Unlike in our model, in that literature, sellers know the state,

and these contributions typically focus on “reserve-price equilibria.”6 In our model, no trader

knows the state, we consider the full set of equilibria, and we study information aggregation

with small frictions.
5For recent contributions, see, for example, Satterthwaite and Shneyerov (2007, 2008), Shneyerov and Wong

(2010), Kunimoto and Serrano (2004), Lauermann (2012), and Lauermann (2013), and the references therein.
Most of these contributions study settings with private information.

6An exception is Janssen, Parakhonyak, and Parakhonyak (2014).
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Our work is also related to work on matching and bargaining with exogenously assumed

common values.7 Particularly prominent contributions are Wolinsky (1990) and Blouin and

Serrano (2001).8 These contributions provide negative convergence results and uncover a

fundamental problem of information aggregation through search: as frictions vanish, traders

can search and experiment at lower costs. This implies that traders increasingly insist on

favorable terms, turning the search market into “a vast war of attrition”(Blouin and Serrano

(2001, p. 324)). As a result, non-competitive prices can be sustained in Wolinsky (1990)

and Blouin and Serrano (2001) even when search frictions are small.9 In our model, the

winner’s curse implies a similar effect: when the exit rate vanishes, the buyers bid low for an

increasingly large number of periods. Nevertheless, this “insistence problem”is overcome by

the fact that agents who did not trade become more accommodating in subsequent meetings.

Golosov, Lorenzoni, and Tsyvinski (2014) consider a related search model with common

values in which the traded good is divisible and study the long-run outcome for fixed frictions.

They do not study whether outcomes become competitive in the “frictionless” limit, and

learning is qualitatively different with a divisible good.

There is a large body of related work on the foundation for rational expectation equilib-

rium in centralized institutions.10 The assumption of a central price formation mechanism

distinguishes this literature from dynamic matching and bargaining games in which prices

are determined in a decentralized manner through bargaining.

Finally, our work is related to the literature on social learning (Banerjee and Fudenberg

(2004)), the recent work on information percolation in networks (Golub and Jackson (2010)),

and information percolation with random matching (Duffi e and Manso (2007)). In the latter

model, agents who are matched observe each other’s information. In our model, learning

from other traders is endogenous and depends on the chosen action (bid).

7Majumdar, Shneyerov, and Xie (2015) is the only other paper that considers a dynamic matching and
bargaining game with aggregate uncertainty. However, they assume that traders are subjectively certain about
the market conditions.

8Serrano and Yosha (1993) consider a related problem with one-sided private information, and Gottardi and
Serrano (2005) consider a “hybrid”model of decentralized and centralized trading. Lauermann and Wolinsky
(2016) study information aggregation if a single, privately informed buyer searches among many sellers.

9To make their model tractable, Wolinsky (1990) and Blouin and Serrano (2001) assume that traders choose
between only two price offers (bargaining postures). It is an open question whether the trading outcomes in
these models are competitive with small frictions if prices can be chosen freely.
10Examples are the work on large double auctions by Reny and Perry (2006), Cripps and Swinkels (2006),

and Pesendorfer and Swinkels (1997, 2000), as well as the work on information aggregation in Cournot models,
summarized in Vives (2010), and in financial markets (e.g., Kyle (1989), Ostrovsky (2012), and Rostek and
Weretka (2012)).
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3 Model and Equilibrium

3.1 Set-Up

There are a continuum of buyers and a continuum of sellers present in the market. In periods

t ∈ {...,−1, 0, 1, ...}, these traders exchange an indivisible, homogeneous good. Each buyer
demands one unit, and the buyers have a common valuation v > 0 for the good. Each seller

has one unit to trade. The common cost of selling is c, with v > c ≥ 0. Trading at price p

yields payoffs v − p and p − c, respectively. A trader who exits the market without trading
has a payoff of zero. Buyers and sellers maximize the expected payoffs.

There are two states of nature, a high state and a low state ω ∈ {h, `}. Both states are
equally likely. The realized state of nature is fixed throughout and is unknown to the traders,

similar to Wolinsky (1990). For each realization of the state of nature, we consider the corre-

sponding steady-state outcome, indexed by ω. The state of nature determines the constant

and exogenous number of new traders who enter the market (the flow), and indirectly, the

constant and endogenous number of traders in the market (the stock). The mass of buyers

entering each period is d` in the low state and dh in the high state, with dh > d` > 0. The

mass of sellers who enter each period is the same in both states and is equal to s. There is

uncertainty about who is on the long side of the market whenever dh > s > d`.

The buyers and the sellers are characterized by their beliefs θ ∈ [0, 1], the probability

that they assign to the high state. (Sometimes θ is called a trader’s type.) Each buyer who

enters the market privately observes a noisy signal x. The signal is distributed with support

[0, 1] and with a cumulative distribution function (c.d.f.) GBs (x|ω) that admits a continuous

density function, gBs (x|ω). The likelihood ratio gBs (x|h)
gBs (x|`) is strictly increasing. Therefore, the

Bayesian posterior θ (x) = (0.5)dhgBs (x|h)
(0.5)dhgBs (x|h)+(0.5)d`gBs (x|`) is strictly increasing in x and, hence,

invertible.

We will work directly with the distribution of the induced posteriors to simplify the

exposition later. The support of this distribution is [θB, θ̄
B

] = [θ (0) , θ (1)]. Its c.d.f. is

GB(θ|ω) = GBs (θ−1 (θ) |ω), and its density is denoted gB(θ|ω).11

For a buyer, the mere fact of entering the market contains news because the inflow is

larger in the high state. This is expressed by the likelihood ratio dh/d` > 1.12 To avoid

11One can easily verify that the density of posteriors must satisfy θ = (0.5)dhgB(θ|h)

(0.5)dhgB(θ|h)+(0.5)d`gB(θ|`) , and,

hence, θ
1−θ = dh

d`
gB(θ|h)

gB(θ|`) . This formula expresses the Bayesian consistency of the distribution of posterior
beliefs. Smith and Sorensen (2013) call it the no-introspection property: “If the individual further updates
his private belief θ by asking of its likelihood in the two states of the world, he must learn nothing more.”An
implication is that GB (·|h) dominates GB (·|`) in the likelihood ratio ordering. We will later use an analogous
property for the distribution of beliefs in the entire population, and not just for beliefs of the entering cohort.
12To formally define updating based on entering the market, suppose that there is a potential set of buyers of

mass d, with d ≥ d(h). In state ω, a mass d(ω) of the potential buyers actually enters the market. Alternatively,
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technical diffi culties, and to simplify exposition, we assume that13

1/2 < θB < θ̄
B
< 1. (1)

The sellers’side is analogous. In state ω, the induced posteriors of the entering sellers are

distributed on the support [θS , θ̄
S

] with 0 < θS < θ̄
S
< 1, with a c.d.f. GS(θ|ω) and density

gS(θ|ω).

Each period unfolds as follows:

1. Entry occurs (the “inflow”): A mass s of sellers and a mass dω of buyers enter the

market. The buyers and sellers privately observe signals, as previously described.

2. Each buyer in the market (the “stock”) is randomly matched with one seller. A seller

is matched with a random number of buyers. The probability that a seller is matched

with n = 0, 1, 2, ... buyers is Poisson distributed14 and is equal to e−µµn/n!, where

µ(ω) = D(ω)/S(ω) is the endogenous ratio of the mass of buyers to the mass of sellers

in the stock as described below. The expected number of buyers who are matched with

each seller is equal to µ(ω), of course.

3. Each seller runs a first-price sealed-bid auction with a secret reserve price r. Feedback

is minimal: The buyers do not observe r or how many other buyers are matched with

the same seller. The bids are not revealed ex post, so a buyer learns only whether she

has won, and a seller observes only whether the highest bid is above r.

4. A seller leaves the market if his good is sold; otherwise, the seller stays in the stock

with probability δ ∈ [0, 1) to offer his good in the next period. A winning buyer pays

her bid, obtains the good, and leaves the market. A losing buyer stays in the stock

with probability δ and is matched with another seller in the next period.

5. Upon losing, the remaining traders who did not exit update their beliefs based on the

information gained from losing with their submitted bids or not trading with their

chosen reserve price r. Together with the inflow, these traders make up the stock for

the next period.

one can simply interpret d(h)/d(`) as the prior of an entering buyer. For games with population uncertainty
and updating about an unknown state of nature, see Myerson (1998) and, especially, Milchtaich (2004).
13Because the belief conditional on entering (but without conditioning on the signal) is equal to dh/(dh +

d`) > 1/2, the assumption holds if g
B
s (x|h)

gBs (x|`) is suffi ciently close to one for all x ∈ [0, 1] (the initial signal is not

too precise).
14This distribution is consistent with the idea that there are a large number of buyers who are independently

matched with sellers. The resulting distribution of the number of buyers matched with a seller is binomial.
When the number of buyers and sellers is large, the binomial distribution is approximated by the Poisson
distribution.
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On the individual level, the exit rate 1− δ acts similarly to a discount rate: Not trading
today creates a risk of losing all trading opportunities with probability 1−δ. On the aggregate
level, the exit rate ensures that a steady state exists for all strategy profiles. Traders do not

discount future payoffs beyond the implicit discounting of the exit rate.

We study steady-state equilibria in stationary strategies so that the distributions of the

bids and reserve prices depend only on the state and not on time. An immediate consequence

is that in any period, the set of optimal actions (bids and reserve prices) depends only on the

current belief about the likelihood of being in the high state.

The matching technology and the bargaining protocol are adapted from Satterthwaite

and Shneyerov (2008). In fact, our model is essentially a special case of theirs if the state is

known, with the main difference being that they allow for heterogeneous values and costs.15

We discuss our setup with a known state as a benchmark now, before returning to the detailed

description of equilibrium.

3.2 Full Information Benchmark

Suppose that d (h) = d (`) = d. In this case, the state of the market is known, and we can

drop the beliefs from the description of the model. The analysis of the steady-state of this

case is standard. In particular, let V S and V B denote the steady-state equilibrium payoffs of

the sellers and the buyers, respectively. A standard perfection requirement implies that the

sellers’reserve price satisfies

r − c = δV S . (2)

The sellers accept the highest price offer if trading at that price yields higher payoffs than

continuing the search and rejects the price offer otherwise. By standard arguments, the

buyers’equilibrium bidding strategies must be fully mixed without atoms and no gaps on

some interval [r, p̄], where p̄ is determined by the buyers’indifference between the end-points,

v − p̄ = e−µ (v − r) + δ
(
1− e−µ

)
V B,

where e−µ is the probability that the seller is matched with no buyer.16 Here, v − p̄ is the
payoff from bidding p̄ as the highest bid in the support is certain to win. The bid r wins only

if there is no other bidder, which happens with probability e−µ. The lowest bid in the offer

distribution must be equal to r exactly because it wins only if there is no other bidder. By

using a similar indifference condition for intermediate bids, one can characterize the whole

distribution of the bids as a function of V B and V S (determining r). Then, a fixed-point

argument implies the existence of an equilibrium and allows to determine V S and V B as well.
15Another difference is that we do not have a separate entry stage.
16Because of the Poisson distribution, e−µ is both, the probability that a seller is matched with 0 buyers

and the probability that a buyer has no competitor.

9



This full-information benchmark is essentially identical to Burdett and Judd (1983), one

of the earliest contributions to equilibrium search theory with a non-degenerate distribution of

prices. It is a (very) special case of Satterthwaite and Shneyerov (2008), as mentioned before.

In our model, the heterogeneity of beliefs takes a somewhat similar role as the heterogeneity

of preferences in theirs. In particular, this heterogeneity “purifies”the mixed offer strategy.

3.3 Steady-State Equilibrium

We now return to our model with d (h) > d (`). A steady-state equilibrium specifies the

strategies and the endogenous stocks (the masses of the buyers and sellers and the distribution

of their beliefs). We restrict our attention to pure strategy equilibria where the bid is a

(weakly) increasing function of the belief of the buyer and the reserve price is (weakly)

increasing in the belief of the seller.

Strategies and Stocks.

Formally, the masses of buyers and sellers in the stock are D(ω) and S(ω). The distrib-

utions of beliefs are given by c.d.f.s Γj(·|ω) for j = B,S and ω = `, h. We assume that each

function Γj is absolutely continuous, with a density γω,j that is right continuous on [0, 1).

The bidding strategy β is a weakly increasing function and maps beliefs from [0, 1] to

[c, v]. Moreover, we assume that β is strictly increasing on the support of ΓB, so there are

no ties. The reserve price strategy ρ is a weakly increasing function and maps beliefs from

[0, 1] to [c, v].

Trading Probabilities.

Let θB(1) denote the first order statistic of the buyers’beliefs in any given match. We set

θB(1) = 0 if there is no buyer present. Let ΓB(1) (x|ω) denote the probability that the highest

belief in the auction is below x. The event in which all the buyers have a belief below x

includes the event in which there are no buyers present at all. The probability of having no

buyer present is ΓB(1) (0|ω) by our assumption that there is no atom in the distribution of beliefs

at zero. The Poisson distribution implies ΓB(1) (0|ω) = e−µ(ω), where µ(ω) = D(ω)/S(ω) as

defined before. In general, the first order statistic of the distribution of beliefs is given by

ΓB(1) (x|ω) = e−µ(ω)(1−ΓB(x|ω)). (3)

Here, µ(ω)(1− ΓB (x|ω)) is the ratio of the mass of buyers who have a belief above x to the

mass of sellers, and e−µ(ω)(1−ΓB(x|ω)) is the probability that the seller is matched with no

buyer who has such a belief.

Given the assumption that the bidding strategies are strictly increasing on the support

of ΓB, a bid b wins if (i) there is no bidder in the match with a belief above x = β−1 (b) and
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(ii) the seller sets a reserve price of at most b.17 So, the probability that a buyer wins with

bid b in state ω is

qB(b|ω) := ΓB(1)

(
β−1 (b) |ω

)
ΓS(ρ−1(b)|ω).

We also refer to qB as the per-period trading probability. Similarly, let qS(r|ω) = 1 −
ΓB(1)

(
β−1 (r) |ω

)
denote the probability that a seller trades with reserve price r in state ω.

Updating.

We first derive the posterior of a buyer upon not trading with bid b. Bayes’rule requires

that

θB+ (θ, b) =
θ(1− qB(b|h))

1− (θqB(b|h) + (1− θ)qB(b|`)) , (4)

if the denominator is strictly positive; otherwise, θB+ is arbitrary.

The posterior of a seller who did not trade with reserve price r is

θS+ (θ, r) =
θ(1− qS(r|h))

1− (θqS(r|h) + (1− θ)qS(r|`)) ; (5)

the denominator is always strictly positive.

To discuss marginal incentives, it is useful to define the “tieing posterior”. Let b(1) be

the highest bid (with b(1) = c if there is no bid) and let θS0 (θ,A) = Pr
(
h|b(1) ∈ A, θ

)
, be the

posterior probability of h conditional on the highest bid being in a (measurable) set A.18

Taking the conditioning eventA to be a single bid b, we obtain θS0 (θ, b) = Pr
(
h|b(1) = b, θ

)
.

Likewise, θB0 (θ,A) is a buyer’s posterior probability of h conditional on the highest other bid

being in a set A. Because of the Poisson distribution, θB0 (θ,A) = θS0 (θ,A).

Optimality Conditions.

Let V B (θ) denote the buyers’value function, which satisfies

max
b

qB(θ, b)(v − b) + δ(1− qB(θ, b))V B
(
θB+(θ, b)

)
, (6)

with qB(θ, b) = θqB(b|h) + (1− θ)qB(b|`). A bidding strategy β is optimal if b = β (θ) solves

problem (6) for every θ.

Let V S (θ) denote the sellers’value function, which satisfies

max
r

qS(θ, r)(r − c) + δ(1− qS(θ, r))V S
(
θS+(θ, r)

)
, (7)

with qS(θ, r) = θqS(r|h) + (1 − θ)qS(r|`). A reserve-price strategy ρ is optimal if r = ρ (θ)

solves the problem (7) for every θ.

17Here and in the following, we use the generalized inverse of β, given by β−1 (b) = inf {θ ∈ [0, 1] |β (θ) ≥ b},
where β−1 (b) = 1 if β (θ) < b for all θ.
18So, θS0 (θ,A) =

θPr(b(1)∈A|h)

θPr(b(1)∈A|h)+(1−θ) Pr(b(1)∈A|`)
, with Pr(b(1) ∈ A|ω) = ΓB(1) (A|ω).
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We impose a notion of perfectness on the sellers’equilibrium strategies, and require

ρ (1)− c = δV S (1) and ρ (0)− c = δV S (0) . (8)

Thus, a seller who knows the state accepts prices if and only if accepting the price yields

larger payoffs than continued searching. If ρ satisfies (8), it is said to be undominated. The

condition is similar to the perfection requirement (2) in the full-information benchmark.

The main bite of (8) comes in combination with the monotonicity of ρ, namely, for all

θ ∈ (0, 1),

δV S (0) ≤ ρ (θ)− c ≤ δV S (1) . (9)

In particular, (9) rules out “no-trade” equilibria with β (1) = c and ρ (0) = v because

V S (1) = 0 requires ρ (θ) = c for all θ.

Steady-State Conditions.

The steady-state stock of sellers needs to satisfy

S(ω)ΓS (θ|ω) = sGS(θ|ω) + δS(ω)

∫
{τ :θS+(τ ,ρ(τ))≤θ}

ΓB(1)

(
β−1 (ρ (τ)) |ω

)
dΓS (τ |ω) . (10)

To see why, note that the left side is equal to the mass of sellers in the stock at the beginning

of a period who have a type below θ. The right side is equal to the mass of such sellers at the

end of the period, which consists of all those sellers in the inflow with type less than θ (the

first term on the right side) plus the mass of sellers who lose, survive, and update to some

type less than θ (the second term). In steady state, the mass at the end of a period must be

identical to the mass at the beginning.19

The analogous steady-state condition for buyers is

D(ω)ΓB(θ|ω) = dωGB(θ|ω) (11)

+δD(ω)

∫
{τ :θB+(τ ,β(τ))≤θ}

(
1− ΓB(1) (τ |ω) ΓS(ρ−1(β (τ))|ω)

)
dΓB (τ |ω) .

Steady-State Equilibrium.

A steady-state equilibrium in undominated, symmetric, monotone strategies with an

atomless distribution of types (abbreviated to steady-state equilibrium or just equilibrium)

consists of (i) masses of buyers and sellers, S (ω) , D (ω), and distribution functions ΓB (·|ω),

ΓS (·|ω) for ω ∈ {`, h}, such that the steady-state conditions (10) and (11) hold for all θ; (ii)
updating functions θB+, θ

S
+ that are consistent with Bayes’rule (4), (5); (iii) weakly increasing

19For the purpose of this paper, the steady-state model is defined by (10) and (11). Formally, these equations
are taken as the primitives of our analysis, and they are not derived from some stochastic matching process.
This allows us to avoid well-known measure theoretic problems with a continuum of random variables. These
problems can be solved, however, at the cost of additional complexity; see Duffi e and Sun (2007).
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functions β and ρ that are optimal (solve (6) and (7), respectively), with β strictly increasing

on the support of ΓB, and (iv) ρ is undominated, satisfying (8).

Every equilibrium determines (lifetime) trading probabilities Qj (θ|ω), expected trad-

ing prices P j (θ|ω), and expected payoffs EU j (θ|ω), for j ∈ {B,S}. With this notation,
EUB (θ|ω) = QB (θ|ω)

(
v − PB (θ|ω)

)
and EUS (θ|ω) = QS (θ|ω)

(
PS (θ|ω)− v

)
. Similarly,

V j(θ) = θEU j (θ|h) + (1− θ)EU j (θ|`). We will be interested in how equilibrium prices and

trading probabilities compare with those predicted by market clearing.

Roadmap.

Section 4 studies a class of equilibria in which sellers accept all equilibrium bids (“full-

trade equilibria”). We show that such equilibria exist, and that, except for the trading price in

the low state, the frictionless limit is competitive. Using the explicitly constructed full-trade

equilibria, we discuss how learning unfolds. Section 5 then shows that the limit properties of

the full-trade equilibria are shared by all steady-state equilibria. Section 6 shows that under

a natural refinement, the limit outcome is fully competitive.

4 Full-Trade Equilibria

In this Section, we prove the existence of “full-trade” equilibria for large δ. We start by

assuming that sellers are offering a common, exogenously fixed reserve price r0 and show

that there exists a unique “bidding equilibrium”given r0 for all δ. Then, we characterize the

limit properties of these bidding equilibria for δ → 1. Finally, we use these limit properties

to argue that for all suffi ciently large δ, the constraint on the sellers’behavior does not bind

and the bidding equilibria constitute full equilibria of the original game. All proofs related

to the full-trade equilibria are in the online Appendix.

4.1 Bidding Equilibrium: Construction and Uniqueness

Here, we fix an arbitrary r0 ∈ [c, v) and assume that sellers set reserve price r0. A steady-

state bidding equilibrium given r0 is a combination of stocks and strategies such that (i)

the stocks satisfy the steady-state conditions given the strategies, (ii) the buyers’strategy

is optimal, and (iii) the sellers’ strategy is ρ (θ) ≡ r0; equivalently, we replace the sellers’

optimality condition by ρ (θ) ≡ r0 in the original steady-state equilibrium definition (and

drop undominatedness) .

Proposition 1 For any r0 ∈ [c, v), there exists a unique steady-state bidding equilibrium.

The proof is in the online Appendix. Below is a sketch of the arguments.
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Decoupling and the Construction of Steady-State Stocks. The buyers bid at least

r0, and thus, all bids are accepted. Moreover, by assumption, β is strictly increasing on the

support of ΓB. Therefore, given any stock of buyers and sellers, the winning probabilities of

any buyer type θ is independent of the exact form of β. This implies also that the posterior

belief conditional on losing with an equilibrium bid is independent of β. Together, this allows

us to “decouple”the construction of the steady-state stock and β.

The construction of the steady-state stock in the online Appendix uses a recursive algo-

rithm on the cohorts of buyers. This algorithm starts with the exogenously given entering

cohort and then recursively determines the cohort that remains in the next period. The

diffi culty of the construction is to ensure that updating is well-behaved during the recursion.

Finally, the constructed steady-state stock is shown to be the unique stock that satisfies the

steady-state equations.

The Bidding Strategies. Given the unique steady-state stock, we construct the bidding

strategies. First, we characterize the bidding equilibrium in a static, reduced-form auction in

which we take continuation values as given. Note that the continuation values depend not only

on the state but also on the buyers’beliefs, since the beliefs determine the buyers’behavior.

Specifically, we suppose that W (θ, y) is the expected continuation payoff of a buyer if the

probability of the high state is y and the buyer acts according to belief θ. Then, we show that

for any W that satisfies certain regularity conditions, there exists a unique bidding strategy

that forms a mutual best response in the reduced-form auction. This bidding strategy satisfies

a standard differential equation with boundary condition β (0) = r0. (For more details and a

statement of the differential equation determining β, see Section 4.5.)

The second step shows that the continuation values are unique. Specifically, we show that

in every steady-state bidding equilibrium, continuation value functions W have to satisfy

certain regularity properties.20 Then, for any given continuation value function that satisfies

these properties, the unique bidding strategy found in Step 1 defines a new continuation

value if all buyers are bidding according to it. The implied mapping is then shown to be a

contraction on the set of “regular”continuation value functions, which establishes both the

existence and the uniqueness of the bidding equilibrium.

Note that equilibrium existence is shown through an explicit construction: First, the

steady-state stocks are constructed using a recursive algorithm on the cohorts. Second, a

contraction mapping determines the continuation values, and, third, the bidding strategy is

a solution to a standard differential equation. Thus, in principle, the bidding equilibria can

be numerically constructed and evaluated.

20 In particular, continuation values V B (θ) are decreasing and convex, and a regular W (θ, ·) is a family of
hyperplanes supporting some decreasing and convex V B (θ).
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4.2 Limit Properties of Full-Trade Bidding Equilibria

This section characterizes the outcome of full-trade equilibria for δ → 1. Let {δk}∞k=1 be a

sequence of such that the exit rate converges to zero, limk→∞ (1− δk) = 0. From Proposition

1, there is a unique bidding equilibrium for each δk. Denote the corresponding equilibrium

magnitudes with βk,ρk,Γ
h
k ,Γ

`
k, D

h
k ,P

j
k , Q

j
k, and so on.

To simplify notation, throughout the paper, the term “limit”(and the operator lim) refers

to a limit over a subsequence such that all the magnitudes of interest are converging.21 We

will not repeat this qualification each time, but it is always there. Also, since most limits are

with respect to k →∞, we suppress it and write lim (1− δk) = 0 etc.

Proposition 2 Suppose d` < s < dh and take any r0 ∈ [c, v). Then, for the unique steady-

state bidding equilibria given r0,

limQSk (θ|h) = 1, and limPSk (θ|h) = v for all θ ∈ [θS , θ̄
S

],

limQBk (θ|`) = 1, and limPBk (θ|`) = r0 for all θ ∈ [θB, θ̄
B

].

Thus, the limit outcome is competitive if r0 = c: The short side of the market trades

with probability converging to one, and the price is v and c in the high and in the low

state, respectively. If r0 > c, then the limit outcome is almost competitive, except that the

price is higher than the competitive price when ω = `. In the following, we discuss why the

proposition holds. Because this discussion is already an almost complete proof and because

the proposition is a special case of subsequent results, we do not provide a separate proof.22

(i) The short side trades for sure in each state in the limit in any full-trade equilibrium.

Consider ω = h. Since s < d (h), the steady-state conditions imply for any δk, it must

be the case that Sk (h) < Dk (h).23 So, each seller is matched with positive probability with

a buyer in every period since µk(h) = Dk(h)/Sk(h) > 1 implies lim e−µk(h) < 1.24 Hence,

sellers trade with probability converging to one as δk → 1.

Similarly for ω = `. Here, d (`) < s implies that µk(`) = Dk(`)/Sk(`) < 1. So,

lim e−µk(`) > 0, that is, with positive and nonvanishing probability any buyer is the sole

bidder. Therefore, as δk → 1, buyers must trade with probability converging to one.
21This will be suffi cient for our purposes since for the sequences under consideration, any property that

holds for all converging subsequences also holds for the original sequence itself. Without this convention, we
would need to introduce multiple layers of sub(-sub)sequences throughout many of our proofs.
22To be precise, the following discussion gives a complete proof for why the trading probabilities are com-

petitive. The argument for limPBk (θ|`) = r0 is also essentially complete. The argument for limPSk (θ|h) = v
is the only place where the discussion is incomplete. The interested reader will find a formalization of the
intuition from the text in the proof of Proposition 4 on Page 36 of the Appendix.
23This inequality is formally shown in Equation (29) in the online Appendix. It holds because buyers and

sellers either exit in pairs or with the same exogenous exit probability 1 − δ. This inequality is true for any
strategy profile (β, ρ), not just the full-trade profile considered here.
24Recall our convention that lim refers to a subsequence for which the limit exists in the extended reals.
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(ii) In the limit, almost all trades take place at prices close to r0 in the low state and close

to v in the high state.

Intuitively, bidding in the low state is very non-competitive: Any bid r0 + ε guarantees

sure winning in the low state in the limit because with positive probability any buyer is the

sole bidder, as observed before. Therefore, buyers trade at a price close to r0 in the low state.

Conversely, in the high state, it is not feasible for all buyers to trade with probability one

since s < d (h). Therefore, some buyers will be rationed and have to stay in the market for

many periods as δk → 1. Thus, there are many buyers who are essentially certain that the

state is high, and these buyers drive up the price to v. We return to this discussion later in

Section 4.5, where we relate the dynamic bidding behavior to the winner’s and loser’s curse.

For later reference, note that the sellers’trading probability in the low state satisfies

limQSk (θ|`) =
d (`)

s
< 1,

which follows from limQBk (θ|`) = 1, feasibility,25 and the sellers’common reserve price.

4.3 Full-Trade Equilibria of the Entire Game

We show that when δ is high, then for any interior r0 there exists a full-trade equilibrium of

the overall game where all the sellers set reserve price r0 and the buyers bid according to the

unique bidding equilibrium identified in Proposition 1.26

Proposition 3 Suppose d` < s < dh. Take any r0 ∈ (c, v). If δ is suffi ciently large, there

exists a steady-state equilibrium of the original game with ρ (θ) ≡ r0 for all θ ∈ (0, 1).

The proof is in the online Appendix. The proof uses the limit properties identified in

Proposition 2. We fix some sequence δk → 1 and the corresponding sequence of bidding

equilibria βk.

Setting r0 is a Best Response.

First, the proof shows that setting a reserve price above r0 is not optimal for any seller

with any non-degenerate belief, for δk close enough to 1. Specifically, consider any r′ ∈ (r0, v).

Then, it follows from Proposition 2 that the probability of the low state conditional on the

highest bid being below r′ converges to 1 as δk → 1. This is because sellers trade with

probability converging to 0 at such prices in the high state but with positive probability in

the low state. Now, from Proposition 2 and the subsequent remark, the sellers’continuation

25Feasibility requires that the mass of buyers and the mass of sellers who end up trading are equal; see (20)
for a formal definition.
26For the cases d` < dh < s and s < d` < dh, existence of a full-trade equilibrium is implied by Proposition

6. In these cases, however, r0 depends on δ and cannot be chosen freely in (c, v).
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payoff in state ` is roughly d(`)
s (r0 − c) < r0 − c. Thus, raising the reserve price from r0 to

any r′ ∈ (r0, v) is not optimal for δk large enough. The proof in the appendix verifies that

for suffi ciently large k, there is no profitable deviation to any r′ ∈ (r0, v]. It is clearly not

strictly profitable to set r′ < r0 given βk (0) ≥ r0.

The Reserve Price r0 is “Undominated”

Second, the proof shows that the equilibrium satisfies undominatedness. Since ρ (θ) = r0

for θ ∈ (0, 1) this requires δkV S
k (0) ≤ r0 − c ≤ δkV

S
k (1); see (9). Proposition 2 implies that

for the constructed equilibria, these inequalities hold for all r0 ∈ (c, v) and δk large enough.

In particular, we observed in the paragraph above that limV S
k (0) = d(`)

s (r0 − c), and it is
immediate from Proposition 2 that limV S

k (1) = v − c.

Remark. Seller Observing Bids before Accepting

The proof of Proposition 3 also implies that if the seller observes the highest bid b before

setting a reserve price, then the full-trade equilibrium constructed above would remain an

equilibrium for small frictions. For example, we already argued that the seller would accept

any bid between r0 and r′ < v, for δk suffi ciently large. For bids below r0, one can assign

off-equilibrium beliefs in an appropriate way to rationalize rejection.

4.4 Full-Trade Equilibria and Equilibrium Existence

There are a number of technical challenges that any existence proof for a model of search

with learning faces. Our model is set up to solve or circumvent these, and the full-trade

equilibria are particularly useful in this regard.

First, as is well-known, proving the existence of equilibrium is a non-trivial problem in

any search model because of the endogeneity of the distribution of population characteristics;

see Smith (2011). This problem is magnified with learning because the relevant types (beliefs

in our model) are evolving according to an endogenous transition rule. The assumption that

feedback is minimal helps. Full-trade equilibria help further because we can decouple the

determination of the stock and the strategies; see above.

Second, the effective sellers’ costs and the buyers’values depend (through endogenous

outside options) on a state of the world about which the agents have private information.

In other words, we are solving a bargaining problem with two-sided asymmetric information

and interdependent values, for which little progress has been made; see, e.g., Ausubel, Cram-

ton, and Deneckere (2002). The auction protocol helps because– at least, in the full-trade

equilibria– one market side can be taken to be essentially non-strategic. Moreover, the pro-

tocol reduces the multiplicity problem that is common in two-sided asymmetric information

bargaining problems (although the multiplicity problem is still there).
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There are two other technical problems. First, as Reny and Perry (2006) show, the first

order statistic of affi liated random variables that are mapped by two different monotone

functions (reserve prices and bidding strategies) does not have to be affi liated in general,

which makes it diffi cult to prove existence of monotone equilibria in general. Here, full-trade

equilibria render this problem moot. Second, with a Poisson distributed number of bidders–

even if the means are the same– the affi liation of the first order statistic of the bidders’type

with the state is generally lost. We solve this problem by placing a lower bound on the

bidders’types in the inflow, which implies that belief updating is monotone upward in any

full-trade equilibrium.

Let us note that full-trade equilibria have been studied in the related literature before to

address existence problem; see Satterthwaite and Shneyerov (2007) and the consumer search

literature discussed in our literature review for examples.

Finally, full-trade equilibria allow for explicit characterization results. For example, we

are able to derive the distribution of beliefs explicitly so the model is amenable to numerical

analysis. Also, as shown below, in our model most of the important characterization results

extend to other types of equilibria; see Section 5.

4.5 Price Discovery: Winner’s and Loser Curse

It follows from Propositions 2 and 3 that for δ close to 1, there exists a full-trade equilibrium

in which sellers set a common reserve price close to c and the outcome is close to being

competitive.27 We use these equilibria to show how price discovery takes place through a

“decentralized tâtonnement process,” by which we mean the dynamic bidding behavior of

the individual buyers and sellers.

In the full-trade equilibrium, the buyers and the sellers behave differently: The sellers

set the same reserve price r0 regardless of their time on the market. The buyers, however,

increase their bids every time they have not traded. A buyer who has entered the market

a long enough time ago bids close to v. This ensures that prices are close to r0 in the low

state and close to v in the high state. Given this, the sellers can “trust the market”to ensure

them the right price even when setting a low reserve price. (Indeed, one can observe sellers

using “absolute auctions”with no reserve price in many online markets such as eBay; see

Jehiel and Lamy (2015).) Note that the critical piece of information about the correct price

comes through the behavior of buyers who increase their bids after having been unable to

trade at the low price. This may be compared to the tâtonnement process of a hypothetical

Walrasian auctioneer who increases prices after observing excess demand.

To explain the dynamics of the buyers’bidding strategies and the difference to the sellers’

27For every ε > 0, there is some δ̄ (ε) such that for δ ≥ δ̄ (ε) there is a full-trade equilibrium with r0 = c+ ε.
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reserve price strategies, we consider two important effects. These two effects are useful for

analyzing the buyers’behavior. First, the winner’s curse means that a buyer may bid low

even if she is almost certain that the state favors the sellers. Second, the loser’s curse means

that if a buyer has not traded for suffi ciently many periods, then she eventually increases her

bid.

To describe this more formally, we derive the optimality condition that determines the

equilibrium bidding strategy β. (The following can be skipped by the reader with no loss of

continuity.) Recall that EUB(θ|ω) is the expected payoff of a buyer with belief θ in state ω.

If the probability of state h is y, the expected payoff of a buyer who holds belief θ is

W (θ, y) = yEUB(θ|h) + (1− y)EUB(θ|`).

The expected distribution of the highest type among the other bidders is Γy(1)(θ) = yΓB(1)(θ|h)+

(1− y) ΓB(1)(θ|`), where ΓB(1)(θ|ω) is the probability that the highest (other) type is below θ

in state ω. Then, the payoff of a buyer who has type θ but mimics θ′ by bidding β
(
θ′
)
is

Γθ(1)(θ
′)
(
v − β

(
θ′
))

+ δ(1− Γθ(1)(θ
′))W

(
θB+, θ

B
+

)
,

where θB+ = θB+(θ, β
(
θ′
)
) is the posterior of a buyer who starts with belief θ and loses with

a bid β
(
θ′
)
. Using that in equilibrium choosing θ′ = θ is optimal, and solving the necessary

first-order condition for β to be a best response for given continuation payoffs W yields the

differential equation28

β′ (θ) =
γθ(1)(θ)

Γθ(1)(θ)

(
v − β (θ)− δW

(
θB+, θ

B
0

))
, (12)

with initial condition β (0) = r0 and where θB0 = θB0 (θ, β (θ)) is the posterior of a buyer who

starts with belief θ conditional on being tied at bid β (θ). The main point is that the buyer’s

“effective valuation” is v − δW
(
θB+, θ

B
0

)
, which takes into account the continuation payoff.

Importantly, the continuation payoff is evaluated conditional on being tied because this is

the pivotal event for a marginal change in the bid.29

The winner’s curse effect can be formally captured by the observation that even if a bidder

is very certain that the state is high (θ is close to 1), the bid function may still not respond

much (β′ is close to zero) if, conditional on θ being the highest type in the auction, the belief

θB0 (θ, β (θ)) remains low. Intuitively, in the pivotal event of tieing at the top, the state can

be low with a very high probability even if the prior entering the auction prescribes a very

high probability for the high state. This leads to rational bidders depressing their bids even

28See Lemma 17 and its proof in the online Appendix for the derivation of (12).
29Here, W

(
θB+, θ

B
0

)
is the expected payoff of a buyer who behaves according to belief θB+ (the losing poste-

rior), evaluated given θB0 (the tieing posterior).
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if the bidders attach a very high probability to the high state (and thus a high value of the

object). This phenomenon is called the winner’s curse in the auction literature.

We also describe the loser’s curse in full-trade equilibria. In particular, buyers who have

not traded for suffi ciently many periods know that the state likely favors the sellers– even

conditional on being tied at the top– and increase their bids. Formally, the loser’s curse can

be captured by the observation that buyers update their beliefs upon not trading such that

θB+(θ, β (θ)) > θ.

The winner’s curse works differently for the sellers. The pivotal event for a marginal

increase in r is that the highest bid is equal to the equilibrium reserve price r0. In the full-

trade equilibrium constructed, this pivotal event indicates that the state is likely to be the

low state, indicating a low opportunity cost of selling. Therefore, the winner’s curse does not

arise for the sellers, and the sellers do not have an incentive to increase their reserve prices.

Given that the sellers accept all bids anyway, the scope for the loser’s curse is limited as well.

In the equilibrium constructed, the sellers do not decrease their reserve prices over time at

all.

5 Limiting Allocations for All Equilibria

We argued above that for any sequence of full-trade equilibria, the limiting allocation is

competitive with one exception: The limiting transaction price may be above the competitive

price in the low state when there is uncertainty about the competitive allocation (d` < s <

dh). Here, we show that this characterization extends to all steady-state equilibria.30

Proposition 4 Take any sequence δk → 1 and consider any corresponding sequence of

steady-state equilibria.

• If d` < s < dh, then there exists some p0 ∈ [c, v] such that

limQSk (θ|h) = 1, and limPSk (θ|h) = v for all θ ∈ [θS , θ̄
S

],

limQBk (θ|`) = 1, and limPBk (θ|`) = p0 for all θ ∈ [θB, θ̄
B

].

• If d` < dh < s, then

limQBk (θ|ω) = 1, and limPBk (θ|ω) = c for all θ ∈ [θB, θ̄
B

] and ω = `, h.

• If s < d` < dh, then

limQSk (θ|h) = 1, and limPSk (θ|ω) = v for all θ ∈ [θS , θ̄
S

] and ω = `, h.

30The proof in the Appendix shows a stronger result, proving also the law-of-one-price: The realized trans-
action prices converge in distribution to a point in each state (to v and p0).
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The main diffi culty is showing that trading probabilities become competitive in all steady-

state equilibria in the limit. In the full-trade equilibria considered before, this was easily

shown to be true. Here, however, we need to rule out “war-of-attrition” type structures.

This problem is self-enforcing: Once buyers are insisting on low prices for suffi ciently many

periods, it is no longer optimal for sellers to “trust the market”and set very low reserve prices.

However, once sellers are insisting on high prices themselves, not trading is less informative

for buyers, and so it becomes optimal for buyers to indeed bid low for longer.

5.1 Sketch of the Proof

The proposition follows from two lemmas. The lemmas highlight the role of “rationing” in

price discovery. First, if a seller who knows that the state is high trades with probability less

than one (is rationed), then prices unravel all the way down to c:

Lemma 1 If limQSk (1|h) < 1, then lim ρk (1) = limβk (1) = c.

The lemma is proven as follows. First, limQSk (1|h) < 1 implies that the probability

of a bid above ρk (1) vanishes to zero. Hence, a buyer who bids ρk (1) + ε wins almost

surely (for any ε > 0 and k large enough), so that the optimal bid satisfies limβk (1) ≤
lim ρk (1). It follows that limPSk (1|h) = lim ρk (1). So, limV S

k (1) = limQSk (1|h) (ρk (1)− c).
Undominatedness requires that ρk (1)− c = δkV

S
k (1). Combining these,

lim ρk (1)− c = limQSk (1|h) (ρk (1)− c) .

Now, limQSk (1|h) < 1 implies lim ρk (1)− c = 0.

In words, suppose a seller with type θ = 1 who is sure of ω = h trades with probability

less than one but insists on a relatively high reserve price. Then, the seller’s continuation

payoff is below the payoff from trading at the reserve price, leading the seller to accept lower

prices as well by undominatedness– which eventually unravels all the way to c.

Lemma 2 If limDk(`)/Sk(`) > 0, then either limQBk (0|`) = 1 or limβk(0) = v or both.

The idea of the proof is as follows. First, limDk(`)/Sk(`) > 0 means that sellers are

matched with at least one buyer with a positive, non-vanishing probability every period.

Now, optimal bidding requires that ρk (0) ≤ βk (0), since, otherwise, no seller would accept

βk (0). But for sellers to accept βk (0), it must be unlikely that any buyer bids much higher,

meaning, almost all buyers are bidding between βk (0) and βk (0) + ε, for any ε > 0 and k

large enough.31 So, as δk → 1, there is an atom in the bid distribution at βk (0). Finally, if

31Otherwise, limDk(`)/Sk(`) > 0 would imply that the seller would surely trade in state ` even when he
sets a reservation price of βk (0) + ε for some ε > 0. Hence, setting a reservation price below βk (0) would not
be optimal so that ρk (0) > βk (0), a contradiction.
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both, limQBk (0|`) < 1 and limβk(0) < v, a buyer having type θ = 0 has a strict incentive

to overbid this atom in order to increase her trading probability. So, if limDk(`)/Sk(`) > 0,

either limQBk (0|`) = 1 or limβk(0) = v– as claimed.

Using Lemmas 1 and 2 to prove Proposition 4.

Suppose d` < dh < s. Since more sellers than buyers enter the market, feasibility dictates

that not all sellers can trade with probability one in the limit. In particular, by monotonicity

of ρk, limQSk (1|h) < 1. Now, Lemma 1 implies lim ρk (1) = limβk (1) = c. Therefore, a

buyer who bids c+ ε is certain to trade as δk → 1. So, the buyers’payoffs are converging to

v− c– which means they must trade with probability converging to one at a price converging
to c, implying the claim.

Suppose s < d` < dh. As noted before on Page 15, s < d` implies that Sk (`) < Dk (`)

for all k. Hence, by Lemma 2, either limQBk (0|`) = 1 or limβk(0) = v. However, since more

buyers than sellers enter the market, feasibility and monotonicity of βk require limQBk (0|`) <
1. So, limβk(0) = v. But this means all buyers are bidding close to v in the limit and

Sk (`) < Dk (`) for all k means that sellers are certain to be matched with some buyer

eventually. So, the sellers’payoffs are converging to v − c– which implies the claim.

Finally, suppose d` < s < dh. We start by verifying the trading probabilities and consider

ω = h first. By Lemma 1, if limQSk (1|h) < 1, then lim ρk (1) = limβk (1) = c. This would

mean that all buyers could ensure themselves a payoff close to v − c by bidding just slightly
above c. However, since dh > s, it is not feasible that all buyers have payoffs v− c, since this
would require a trading probability of one. Therefore, limQSk (1|h) < 1 cannot hold.

Now, consider ω = `. If not all buyers are able to trade with probability converging to

one, then a positive mass of them accumulates, implying that limDk(`)/Sk(`) > 0. Also,

by the monotonicity of βk, limQBk (0|`) < 1. So, by Lemma 2, limβk(0) = v. But this and

limDk(`)/Sk(`) > 0 would allow all sellers to trade with probability converging to one at a

price v, so that all sellers could ensure a payoff v − c in the low state. But this contradicts
feasibility since d` < s means that not all sellers can end up trading. Thus, it must be that

almost all buyers can trade, as claimed.

Given that the trading probabilities of the shorter side of the market are one, all traders

from the shorter side will trade at the same price (to see why, suppose two types of sellers

both trade with probability one in the high state but at different prices; then, the type that

trades at the lower price has an incentive to mimic the other). Thus, almost all trade must

take place at the same price (the law-of-one-price). Now, to see that this price must be v

for ω = h, note that the trading probability of the buyers must be strictly smaller than one

since s < dh. But then each buyer would have an incentive to bid higher than the common

trading price in order to increase its trading probability– which drives prices up to v.
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5.2 Relation to Full-Trade Equilibria

The full-trade equilibria also capture another property common to steady-state equilibria:

Suppose that d` < s < dh and consider any sequence of steady-state equilibria that does not

converge to the competitive allocation, that is, p` > c. In the online Appendix, Proposition

9 shows the following: There exists a sequence of periods {tk}∞k=1 with lim(δk)
tk = 1, such

that all sellers who entered at least tk periods ago set a reserve price r that is almost surely

acceptable to any buyer he is matched with. Since lim(δk)
tk = 1, the probability of exogenous

exit before tk vanishes to zero. Thus, similar to the full-trade equilibria, sellers are conceding

quickly to buyers in any non-competitive equilibrium.32

6 Competitive Limit with Monotone Beliefs

6.1 Off-Equilibrium Beliefs and Information Aggregation

Proposition 4 shows that steady-state equilibrium outcomes are almost competitive for small

frictions, except that prices may be too high in the low state if d` < s < dh– meaning,

equilibria are non-competitive exactly when there is aggregate uncertainty about the market

clearing price but not otherwise. Proposition 3 shows that non-competitive equilibria indeed

exist.

What drives the non-competitive outcome is a combination of the trading protocol and

aggregate uncertainty. Most fundamentally, for any r0 ∈ (c, v), it is trivially a mutual best

response for sellers to set reserve prices not smaller than r0 and for buyers to bid at least

r0– since no buyer bids below r0, sellers have no incentives to set reserve prices below r0 and,

given that, buyers have no incentives to bid below r0.

However, in the absence of aggregate uncertainty, this problem can be solved easily. To

see this, recall from Proposition 4 that when s > dh > d`– sellers are known to be on the long

side– prices are close to c in every undominated equilibrium. In particular, there is no full-

trade equilibrium with sellers setting r0 > c. This is because, given the corresponding bidding

equilibrium from Proposition 1, even the highest continuation payoff δV S (1) is bounded

strictly below r0 − c for δ → 1. Therefore, the reserve price r0 would be weakly dominated

by any reserve price r′ < r0 for which r′ > δV S (1) + c: Whatever a seller believes about

the state, if the winning bid is in [r′, r0], accepting the bid yields strictly higher payoffs than

continuation, and otherwise, if the winning bid is not in [r′, r0], then it does not matter

32When the limit is competitive, p` = c, there may be steady-state equilibria in which the sellers do not
concede quickly (relative to δk) in the limit. There is a possibility for an equilibrium in which the sellers set
high reserve prices for a very long time, and the buyers bid close to p` = c for a long time as well. In this
case, the sellers may not have incentives to accept those low bids because those offers are close to the sellers’
outside options, limV Sk (0) + c = p` = c in the limit.
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whether the reserve price is r′ or r0. Thus, requiring equilibrium to be undominated solves

the problem.33

Such an argument no longer works if d` < s < dh. In this case V S (1) ≈ v − c, so no
reserve price r0 ∈ (c, v) is weakly dominated: The seller may believe that conditional on the

winning bid being in [r′, r0], the state is very likely to be high so that it is optimal to reject

it. Intuitively, non-competitive full-trade equilibria with r0 > c for δ → 1 are supported by

off-equilibrium beliefs that put high probability on ω = h if the winning bid is below r0.

However, such off-equilibrium beliefs seem unnatural. First, recall that we already argued

that in any full-trade equilibrium, for any r0 and δ suffi ciently large, the probability of ω = h

is close to zero conditional on the winning bid being in [r0, b
′], for any b′ < v.34 Thus, the

equilibrium beliefs conditional on the winning bid have to be non-monotone in any non-

competitive full-trade equilibrium. Second, for bids that are on the equilibrium path, a later

result shows that beliefs are monotone in all steady-state equilibria; see Lemma 3.

6.2 Equilibrium Refinement and Competitive Limit

Given the above discussion, we formally introduce a refinement that requires monotonicity

of beliefs for off-equilibrium beliefs. We show that under this refinement all sequences of

(undominated) steady-state equilibria have competitive limits; that is, they aggregate infor-

mation effi ciently. Recall that θS0 (θ,A) = Pr
(
h|b(1) ∈ A, θ

)
is the posterior probability of h

conditional on the highest bid being in a (measurable) set A.

Refinement of Monotone Beliefs. An equilibrium satisfies the refinement of monotone

beliefs if there exist beliefs θS0 (θ, ·) such that

(i) θS0 (θ, [b1, b2]) is weakly increasing in b1 and b2;

(ii) for all b1 < b2 it holds that if ρ(θ) = b2, then

δV S(θS0 (θ, [b1, b2])) ≥ b1 − c. (13)

Condition (i) states that beliefs need to satisfy monotonicity, including off-the-equilibrium

path. Condition (ii) states that if a seller sets a reserve price of b2, he can rationalize not

decreasing his reserve price to b1 < b2 by his beliefs θS0 (θ,. ): To see this, suppose that the

seller switches from reserve price b2 to reserve price b1. If the highest bid is not in the interval

33Similarly, in the model by Satterthwaite and Shneyerov (2008) without aggregate uncertainty, there are
strategy profiles that are mutual best-responses in which prices are too high because of the same problem.
In that paper, the problem is solved by having the seller observe the bids before accepting and requiring
sequentially rational acceptance decisions, which has the same implication as undominatedness here, namely,
that sellers follow a reservation price strategy with r = δV S + c.
34See Page 16, when we discuss the sellers’optimality of setting r0.
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[b1, b2], then there is no change in the seller’s payoff. Therefore, when changing his strategy,

the seller can assume that the highest bid is in the interval [b1, b2], and the seller’s belief

conditional on this event is θS0 (θ, [b1, b2]). In this event, if he does not accept the winning

bid, then his continuation utility is at most δV S(θS0 (θ, [b1, b2])). If he does accept the winning

bid, then his profit is at least b1 − c.35 Given this discussion, (13) means that the seller can
rationalize setting b2 rather than b1 by the belief that, conditional on reducing the reserve

price from b2 to b1 and the event b(1) ∈ [b1, b2], the expected payoff from trading at this bid

is lower than the continuation payoff.

The non-competitive equilibria featured in Proposition 3 do not satisfy the refinement.

The reason is that, as we discussed, θS0 (θ, [r0, r0 +ε])→ 0 for any ε > 0. Hence, monotonicity

requires θS0 (θ, [r0 − ε, r0]) → 0. In addition, trade occurs with probability converging to
d`

s < 1 in the low state at a price close to r0. Together, for any θ ∈ (0, 1), continuation

payoffs conditional on b(1) ∈ [r0− ε, r0] satisfy δV S(θS0 (θ, [r0− ε, r0])) ∼= δV S(0) ∼= d`

s (r0− c).
Thus, the refinement fails for b1 = r0− ε and b2 = r0, for ε small enough and δ large enough:

Then, the left-hand side of (13) is roughly d`

s (r0 − c), while the right-hand side is roughly
r0 − c.

The next result shows that this holds more generally. The refinement of monotone beliefs

rules out all steady-state equilibria that are not competitive in the limit. Non-competitive

equilibria can only be supported by non-monotone beliefs.

Proposition 5 The allocation provided by any sequence of steady-state equilibria that satisfy

the refinement of monotone beliefs converges to the competitive limit.

The proposition is proven in the appendix. Given Proposition 4, we only need to show

that, in the case d (`) < s < d (h), the trading price in the low state is competitive, meaning,

p` = c. The key step of the proof (Step 1) is to show that, in the limit, when p` > c, any

on-path winning bid suffi ciently close to p` makes the sellers believe that the state is almost

surely low. Then, part (i) of the refinement extends this to bids below p`. Therefore, we

can argue that it must be the case that sellers would accept a range of bids below p`, which

upsets any equilibrium in which p` > c.

In the next two sections, we show that equilibrium beliefs are monotone, and we show

that there do exist full-trade equilibria that satisfy the refinement.

35The expected price conditional on b(1) ∈ [b1, b2] can be believed to be higher than b1 but not lower. Simi-
larly, the continuation payoff conditional on b(1) ∈ [b1, b2] may be believed to be lower than V S(θS0 (θ, [b1, b2]))
but not higher.
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6.3 Monotone Equilibrium Updating

To motivate the refinement of monotone beliefs, we show that θS0 (θ, b) = lim
ε→0

θS0 (θ, [b, b+ ε])

is increasing in b on the support of β for every steady-state equilibrium for suffi ciently large

δ. This result implies that a higher winning bid in the support of equilibrium bids makes the

high state more likely.36 Thus, the refinement restricts the set of equilibria only through its

implications for bids that are outside the support of β.

Lemma 3 Assume that dh > s > d`. There exists a δ < 1 such that for all δ > δ the

following holds for all steady-state equilibria: For all b′ > b ≥ c such that b and b′ are in the
support of the equilibrium bid distribution,

θS0 (θ, b′) > θS0 (θ, b). (14)

Moreover, let θS0 (θ,∅) be the posterior if no bid is received. Then, for all b ≥ c such that b is
in the support of the equilibrium bid distribution,

θS0 (θ, b) ≥ θS0 (θ,∅). (15)

The lemma uses the characterization from Proposition 4 given d` < s < dh. It follows

from the Proposition that the trading probabilities are competitive. Hence, it must be that

S(`) > S(h) and D(`) < D(h) for low enough frictions. But this implies that the winning

bid tends to be higher in the high state: First, the expected number of buyers per seller is

higher since D(`)/S(`) < D(h)/S(h), and, second, the distribution of beliefs is higher in the

high state (in likelihood ratio order) because, on average, beliefs must be correct.37

Note that we need the characterization from Proposition 4 to argue that S(`) > S(h)

and D(`) < D(h). In general, we cannot prove that this is true. In particular, we have not

been able to verify that θS0 is monotone for all δ or for the cases in which d
` < dh < s or

s < d` < dh.

6.4 Equilibrium Existence

In the online Appendix, we prove that an equilibrium exists that satisfies the refinement.

Proposition 6 There exists some δ < 1 such that for all δ > δ there exists an equilibrium

that satisfies the refinement of monotone beliefs and that has full-trade: For some r0 and for

all θS and θB in the support of beliefs in the stocks, ρ
(
θS
)
≤ r0 ≤ β

(
θB
)
.

36 It also implies that θS0 (θ, [a, b]) is increasing in a and b, whenever θ(1) ∈ [a, b] that has a positive probability.
37This follows from the Bayesian consistency of the distribution of posterior beliefs in the stock; see also

Footnote 11.
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For Proposition 6, we modify our previous construction of a full-trade equilibrium to make

sure that for some off-equilibrium beliefs that satisfy the refinement of monotone beliefs, the

sellers do not have an incentive to decrease the reserve price below the equilibrium reserve

price. To do so, we adopt off-equilibrium beliefs for the sellers that prescribe probability

one to the lowest bidder type θB if the bid is less than βk(θ
B). The key idea is to have

type θ̄S (the highest belief in the support) set a reserve price at which he is just indifferent

to trade conditional on the winning bid being equal to βk(θ
B). Sellers with beliefs below

θ̄
S strictly prefer accepting βk(θ

B), and the refinement can be satisfied by assigning reserve

prices strictly below βk(θ
B). The resulting equilibria has “full trade”by monotonicity of βk.

7 Discussion

7.1 Alternative Matching and Bargaining Protocols

The analysis in Section 6 implies that under full information about market conditions, any

steady-state equilibrium has a competitive limit. Therefore, in Proposition 4, the possibility

of non-competitive limits arises due to the combination of incomplete information about

the economy and the particular matching and bargaining protocol. It is then natural to

ask whether, maintaining the assumption of incomplete information about the economy,

alternative protocols would yield competitive limits. We start the discussion by observing

that, in the present model, the buyers compete directly by bidding, whereas there is no

such competition between the sellers. This helps explain why the price is competitive when

frictions are low in the case in which there are more buyers than sellers but the price may stay

above the competitive level when there are more sellers than buyers. In particular, sellers do

not compete away their profits, because they face no direct competition.38

In this section, we argue that when both buyers and sellers face direct competition, the

price becomes competitive in both states. Moreover, the amount of direct competition does

not have to be large in absolute value, only large compared to the level of frictions. First,

consider a modification where, with probability ε > 0, each buyer is matched with two sellers

(and with probability 1 − ε with one seller). Then the sellers compete, and it is our strong
conjecture that the limit must be competitive even in the low state in this case. The reason

is that each seller has an incentive to undercut its potential rival to make sure that the buyer

chooses his offer. This is suffi cient to force the reserve prices down to the cost of the sellers

38To understand the distribution of market power, note the following. The winning bid is essentially a
take-it-or-leave-it offer to the seller. Without aggregate uncertainty, the seller accepts any offer that makes
him better off than waiting for the next period. This limits the market power of sellers. With aggregate
uncertainty, however, "belief-threats" allow the seller to rationalize rejecting low offers and commit to a high
reserve price. This essentially flips the order of moves and makes the seller the proposer.
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when there are more sellers than buyers in the economy.39

Second, consider a setting where buyer competition is limited in that, for any given seller,

at most two bids go through for the seller to choose from. We conjecture that this more

limited buyer competition is suffi cient for the price to be competitive in the high state, as

buyers face a Bertrand-type head-on competition with probability one in the high state in

the limit.40 Therefore, a competitive limit arises as long as there is some but not necessarily

overly fierce competition to trade with an agent on the short side.

7.2 Applications and Testable Implications

Online auction markets, especially eBay, are a natural application of our model. In particular,

our model predicts that buyers increase their bids over time. Consequently, buyers may later

regret not having won at a lower price earlier. Finally, buyers who have already spent more

time on the market will win with higher probability. The empirical observations by Juda and

Parkes (2006), discussed in the introduction, are broadly consistent with these predictions.

It would be interesting to test systematically for the presence of learning on eBay.

More generally, the type of two-sided search model that we study has also been used in

the literature to understand decentralized housing and labor markets; see Rogerson, Shimer,

and Wright (2005). The housing market may fit well, since buyers and sellers are often small

households (and, hence, have little experience with the market conditions) and some versions

of an auction are indeed used in many countries.

Another application of our type of model is over-the-counter asset markets in which

individual traders contact each other to bargain over terms or trade; see Duffi e, Garleanu,

and Pedersen (2005) and Duffi e (2012).41 Indirect evidence for the presence of aggregate

uncertainty is the impact of a reform that increased the post-trade transparency of the over-

the-counter U.S. corporate bond market via posting of past transaction terms (TRACE); see,

for example, Bessembinder and Maxwell (2008) and the literature discussed therein. The fact

that post-trade transparency affected the market outcome is consistent with the presence of

uncertainty about the market condition, at least by some traders; see Duffi e, Dworczak, and

Zhu (2016) and our discussion of policy implications below.

39This discussion of direct competition is somewhat reminiscient of the role of competition for partners in
Felli and Roberts (2016). A similar ε-competition model is also studied as a special case in Lauermann (2013).
40For example, the central arguments behind Proposition 4, namely, Lemmas 1 and 2, would extend imme-

diately to this setting.
41Search models for trade of an indivisible good– like ours– are useful for studying asset markets, but the

assumed indivisibility is an important restriction that should be kept in mind. The advantage of an indivisible
good model is its tractability.
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7.3 Policy Implications

Despite its stylized nature, our model has some– at least, suggestive– policy implications.

Perhaps most significant is that our model shows that decentralized markets can, in principle,

achieve the market clearing outcome, even if no one individually knows what it is. Thus,

aggregate uncertainty is not a reason per se to intervene in a market. This may be seen as

lending support to Hayek’s conjecture. At least in theory, this was not immediately evident

from existing work on decentralized markets– especially given prior negative results in related

settings.42

Nevertheless, for large frictions, the outcome is not necessarily (constrained) effi cient

or market clearing. In this case, “soft” interventions in the form of information provision

(transparency) may already be useful. Future extensions of our model could further allow for

heterogeneity in values and costs and for costly participation decisions. In these extensions,

aggregate uncertainty would imply ineffi cient trades and ineffi cient entry choices, allowing the

study of interventions that reduce uncertainty. The recent contribution by Duffi e, Dworczak,

and Zhu (2016) studies such interventions in a model of over-the-counter asset markets. In

their work, one market side knows the market conditions. Extensions of our model would

allow studying such interventions in settings with more symmetric uncertainty.43

7.4 Discussion of Assumptions

Initial Signals.– Newly arriving traders receive an initial signal. This initial signal serves

only a technical purpose to avoid the notation related to mixed bidding strategies that would

otherwise be necessary. All our results continue to hold if the initial signal is uninformative.44

The fact that it is possible to have no external information in our setting may also clarify

the relation to work on the foundation for rational expectations equilibrium with common

values, as in Wolinsky (1990) and Golosov, Lorenzoni, and Tsyvinski (2014). Roughly speak-

ing, in that literature, the question is whether information about the underlying value spreads

from the initially “informed”to the “uninformed”traders through trade.

Minimal Feedback.– Information feedback in the trading protocol is minimal, so agents

learn only through the failure to trade. Despite the minimal feedback, information aggrega-

tion is possible in equilibrium. In principle, it should be possible to extend the characteri-

zation results to trading protocols that reveal more information. For example, consider the

42 Indeed, we show more: even for positive frictions, as long as they are not too large, there exists a
natural class of full-trade equilibria that achieves a constrained effi cient outcome, meaning that aggregate
uncertainty and the war-of-attrition problem do not necessarily imply ineffi ciencies beyond those imposed by
the decentralized meeting technology.
43 Indeed, in the previous section, we mentioned an empirical work of Bessembinder and Maxwell (2008)

documenting the effect of the introduction of post-trade transparency.
44A supplement with details is available on request.
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central arguments behind Proposition 4, namely, Lemmas 1 and 2. These lemmas use very

basic arguments that do not rely on details of the protocol such as minimal feedback.

Extending the existence results, however, would be more challenging because (i) mini-

mal feedback enabled us to construct the steady-state stock and the strategies separately

(“decoupling”) and (ii) more information implies more signaling possibilities, requiring more

demanding refinements for which equilibrium existence would be harder to establish.

We note that the full-trade equilibria remain equilibria if sellers observe the winning bid

before making an acceptance decision (see Page 12). In addition, we establish in a companion

paper that sellers have strict incentives to choose a protocol that limits information flows to

buyers because the value of continued search is smaller when buyers are uncertain about the

state, reducing the value of their outside option; see Lauermann and Virág (2012).

Steady-State and Learning with Overlapping Generations.– The overall stock of

the market is in a steady state, and the underlying market conditions are assumed constant

over time. This captures a setting in which traders believe market conditions to be stable

relative to the duration of their own search. To us, this belief seems to be relevant in many

search environments where there is entry by new traders over time, so that trade and learning

continually take place. A model with entry in which different cohorts are continuously mixed

to generate a steady distribution of beliefs may, therefore, be a realistic depiction.45

Moreover, despite the stationarity on the aggregate level, the history-dependent, dynamic

behavior of the individuals and cohorts is at the heart of our model and analysis. In particular,

potential buyers and sellers learn about market conditions through experimentation over time

and change their behavior as their beliefs change. Finally, although there is no market-wide

learning, individual buyers and sellers will almost surely learn the state as frictions become

small– and they will do so even if there are essentially no initial signals (meaning that this

is true even if all information is endogenously generated by the market).

Simple Economy with Unit Demand/Supply.– The underlying economy is a simple

market with unit demand and supply and homogeneous values and costs. There are two

reasons for concentrating on such a simple economy. First, the assumption that the good is

indivisible captures markets for goods like houses or labor, in which traders engage mostly

in one-time transactions. The indivisibility is critical to how learning and experimentation

take place. Learning is different if the good is easily divisible because traders can engage

in frequent transactions of incremental units; see Golosov et al. (2014). Thus, models with

indivisible goods capture different economic scenarios from those with divisible goods.

There is also a technical reason for why we concentrate on the case of unit demand and

45A similar steady-state learning model with overlapping generations is Fudenberg and Levine (1993), albeit
in a different literature.
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supply. The advantage of our setup is that types are one-dimensional (beliefs about the

state). This makes the analysis transparent, and also allows us to utilize available techniques

for analyzing auctions and establish the existence of equilibrium. With divisible goods, the

effective type becomes two-dimensional– the beliefs and the current endowment of an agent–

and so one typically cannot establish equilibrium existence. It may be possible to push the

characterization result further. For example, in a previous version (with a slightly different

protocol and refinement), we considered a setting with heterogeneous valuations– giving rise

to a downward sloping market demand function– and showed market clearing in the limit.

However, our methods would not allow us to prove existence with two-dimensional types.

8 Conclusion

We study a search market in which the participants do not know the market conditions. We

emphasize three contributions to the literature. First, we study the combined effects of search

and learning in a novel, two-sided equilibrium search model with uncertainty about market

conditions. Second, we identify tractable “full-trade equilibria” that provide insights into

the economics of decentralized markets and demonstrate how bidding and learning over time

takes place. Third, we test the hypothesis that even if decentralized, markets can nevertheless

aggregate information that is dispersed among their participants. When frictions are small,

trade takes place at the correct market clearing prices “as if”the participants actually knew

demand and supply conditions. We relate the behavior that leads to this outcome to a

“decentralized tâtonnement process.”

For small frictions, our analysis suggests that decentralized markets may work well even

with uncertainty about the market conditions, despite earlier negative results in related set-

tings. Natural applications of our model include labor markets and housing markets, but

models of this kind have also proven useful for over-the-counter asset markets.

A number of open questions remain. In particular, to understand the relation to the

negative results in Wolinsky (1990) and Blouin and Serrano (2001) for rational expectations

equilibrium with common values, it may be useful to study a more general model that nests

both of the extreme settings; that is, their pure common value environment and our private

value setting. Furthermore, future work may use our algorithm for equilibrium construction

to study the market outcome for large frictions: How large is equilibrium price dispersion?

How long do traders wait in the market? It would be interesting to quantify the impact of

aggregate uncertainty: Can aggregate uncertainty magnify price/wage dispersion and waiting

times (unemployment) relative to a market with known demand and supply conditions?
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9 Appendix

Content. This Appendix contains the proofs for the general characterization results from

the paper, namely, Propositions 4 and 5 and Lemma 3. All results concerning full-trade

equilibria are relegated to a separate online Appendix.

Notation. We abuse notation and write QB ((β, θ) |ω), QS ((ρ, θ) |ω), PB ((β, θ) |ω) , etc.,

for the trading probabilities and the (expected) transaction prices for the allocation of type

θ who follows strategy β or ρ. Let QB (b|ω), QS (r|ω), PB (b|ω) , QS (r|ω) denote the trading

probability and price variables for the constant bidding strategy β ≡ b and constant reserve

price strategy ρ ≡ r, respectively.
We continue to use the convention that lim refers to a subsequence for which the limit

exists, possibly in the extended reals.

9.1 Proof of Proposition 4

We start the proof of Proposition 4 with a number of intermediate results. The first Lemma

captures the implications of experimentation becoming cheap as frictions vanish.

Lemma 4 Consider any sequence of steady-state equilibria for δk → 1.

Sellers. If for some θ > 0 it holds that limQSk (θ|h) = 1, then the realized transaction price

of a seller with belief θ converges in distribution to a single price ph(θ) ∈ [c, v] in the high

state. If limQSk (θ′|h) = limQSk (θ′′|h) = 1 for some 1 ≥ θ′, θ′′ > 0, then ph(θ′) = ph(θ′′) = ph.

Moreover, if limQSk (θ|h) = 1 for some θ < 1, then limWS
k (θ|`) = limV S

k (0).

Buyers. If for some θ < 1 it holds that limQBk (θ|`) = 1, then the realized transaction price

of a buyer with belief θ converges in distribution to a single price p`(θ) ∈ [c, v] in the low

state. If limQBk (θ′|`) = limQBk (θ′′|`) = 1 for some 0 ≤ θ′, θ′′ < 1, then p`(θ′) = p`(θ′′) = p`.

Moreover, if limQBk (θ|`) = 1 for some θ > 0, then limWB
k (θ|h) = limV B

k (1).

Proof. We prove the lemma for the sellers’side only. Fix θ, θ′ > 0 such that limQSk (θ|h) =

limQSk (θ′|h) = 1 and let ph(θ) = limPSk (θ|h).

Step 1. We show that the actual trading price of type θ converges to ph(θ) in probability

in the high state.

Given limQSk (θ|h) = 1, it follows that there exists a sequence tk with lim δtkk = 1 such

that the seller trades almost surely by period tk in the high state in the limit if he employs

his equilibrium strategy. Let χk(p) denote the probability of selling at price p or above by

period tk if the equilibrium strategy is used by type θ. Suppose that for some p > ph(θ),
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limχk(p) > 0, otherwise convergence to ph(θ) in probability follows.46 We propose a strategy

Σ(p) with two properties:

P1. the seller trades at or above price p with a probability converging to 1 in the state h,

P2. the payoff achieved in the low state converges to the (full information) optimal payoff

in the state `, limV S
k (0).

The strategy Σ(p) has the following form: the seller sets a reserve price p for zk periods,

where zk = αktk. After zk periods, if the seller has not traded he adopts a strategy that

is optimal in the low state. We require that limαk = ∞, and that lim δzkk = 1.47 This

strategy satisfies properties P1 and P2. To see that P1 is satisfied by Σ(p), we show that the

probability of trading by period zk (at or above price p) in the high state converges to one.

Let qk denote the probability of trading in the high state by period tk if Σ(p) is used. It holds

that qk ≥ χk(p),
48 and thus limχk(p) > 0 implies q = lim qk > 0. Using, that lim δzkk = 1,

the trading probability offered by strategy Σ(p) by period zk = αktk in the high state in the

limit is

lim q + (1− q)q + ....(1− q)αk−1q = lim
q(1− qαk)

1− (1− q) = 1.

To see that P2 is satisfied, note that the exogenous exit probability by period zk converges

to zero as lim δzkk = 1. Therefore, the seller drops out with a zero probability in the limit

before he switches to a strategy that is optimal in the low state (at period zk), and thus his

payoff in the low state converges to the full information limiting payoff limV S
k (0).49

It is immediate from P1 and P2 that the original strategy was not optimal, a contradiction

with our starting assumption.

Step 2: Step 1 implies that a price ph(θ′) is achieved almost surely by type θ′ in the

equilibrium in the high state if limQSk (θ′|h) = 1. If ph(θ′) < ph(θ) then type θ′ could adopt

strategy Σ(ph(θ)−ε) for ε arbitrarily small, which would improve his payoff in state h to ph(θ),

and attain the optimal payoff in state `.50 Therefore, ph(θ′) = ph(θ) must hold in equilibrium.

Finally, the full information payoff can be achieved by such a strategy Σ(ph(θ) − ε) in the
46Because then the seller trades almost surely at the expected price ph in the limit as the mean trading

price is ph.
47Formally, lim δ

tk
k = 1 is equivalent to lim tk(1−δk) = 0. We need to have lim δ

zk
k = 1 or lim zk(1−δk) = 0.

Let (zk(1− δk))2 = tk(1 − δk), which clearly implies that lim zk(1 − δk) = 0 if lim tk(1 − δk) = 0. Then
α2
kt

2
k(1− δk)2 = tk(1− δk) or α2

ktk(1− δk) = 1. Then lim tk(1− δk) = 0 implies that limαk =∞, which then
provides the appropriate construction.
48This holds because if an arbitrary reserve price strategy trades at a price p or above in a period, then

strategy Σ(p) trades at a price p or above in that same period or before.
49This argument assumes that the trading probability by period zk stays zero in the low state in the limit.

But otherwise, a sure trading probability (over the entire lifetime) at price p or above could be guaranteed in
the low state. But then in both states a revenue of p or above could be guaranteed and thus setting a reserve
below p and achieving a revenue of ph cannot be optimal in the high state.
50Again, the argument assumes that the trading probability by period zk stays zero in the low state in the

limit. This assumtpion is without loss of generality, see the footnote above for further discussion.
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low state in the limit (as outlined in Step 1) regardless of the value of ph(θ) and ε > 0, which

concludes the proof. Q.E.D.

Proof of Lemma 1. Suppose limQSk (1|h) < 1. We want to show that lim ρk(1) =

limβk (1) = c. From limQSk (1|h) < 1, it follows that lim 1−qSk (ρk(1)|h) = lim qBk (ρk(1)|h) =

1 (almost no buyer bids above ρk(1)). Hence, limQBk (ρk(1)|h) = 1, so optimality of βk (1)

implies limβk (1) ≤ lim ρk(1). From undominatedness (8) and V S
k (1) ≤ βk(1) − c, we have

ρk (1)− c ≤ δk (βk(1)− c), and hence ρk ≤ βk (1) for all all k. Hence, limβk (1) = lim ρk(1).

It follows from the monotonicity of βk that limPSk (1|h) = lim ρk(1). From the definition of

V S
k and (8), for all k large enough,

ρk(1)− c = δkV
S
k (1) = δkQ

S
k (1|h)

(
PSk (1|h)− c

)
.

From the displayed equation, the hypothesis limQSk (1|h) < 1, and the previous observation

limPSk (1|h) = lim ρk(1), it follows that lim ρk(1) = c. Since we already showed limβk (1) =

lim ρk(1), the hypothesis limQSk (1|h) < 1 implies that limβk (1) = lim ρk(1) = c. Q.E.D.

Proof of Lemma 2. Suppose that limDk(`)/Sk(`) > 0. We show that

limQBk (βk(0)|`) < 1⇒ limβk(0) = v,

which proves the lemma.

First, βk (0) ≥ ρk (0). Otherwise, V B
k (0) = 0, in contradiction to ρk (1) − c ≤ δk (v − c)

implying strictly positive profits when bidding b = ρk (1). Hence, by monotonicity of βk and

the hypothesis limDk(`)/Sk(`) = limµ`k > 0, we have

lim qSk (ρk (0) |`) = lim 1− e−µ`k > 0,

which implies that

limQSk (θ = 0|`) = 1. (16)

Let p` := limPSk (0|`). From (8) and (16), lim ρk (0) = p`. Of course,

limQSk (ρk (0) + ε|`) < 1, (17)

for any ε > 0, by optimality of setting reserve price ρk (0) (if ρk (0)→ v such ε does not exist

but then the lemma follows directly from βk (0) ≥ ρk (0)). We have

lim qSk (bk + ε|`) = lim 1− e−µ`k(1−ΓBk (β−1(bk)|`) = 0,

where the first equality follows from definition of qSk and the second follows from (17). So,

lim e−µ
`
k < 1 and lim e−µ

`
k(1−ΓBk (β−1(bk)|`) = 1. Hence,

lim
qBk (bk + ε|`)
qBk (bk|`)

:= α = lim
e−µ

`
k(1−ΓBk (β−1(bk)|`)ΓSk

(
ρ−1
k (bk + ε) |`

)
e−µ

`
kΓSk

(
ρ−1
k (bk) |`

)
≥ lim

e−µ
`
k(1−ΓBk (β−1(bk)|`)

e−µ
`
k

> 1, (18)
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where the first equality is from the definition of qBk , the first inequality from ΓSk
(
ρ−1
k (bk) |`

)
≤

ΓSk
(
ρ−1
k (bk + ε) |`

)
and the second inequality from the previous findings. Recall

QBk (bk|`) =

qBk (bk|`)
1−δk

1 + δk
qBk (bk|`)

1−δk

and so the hypothesis limQBk (βk(0)|`) < 1 implies lim
qBk (bk|`)

1−δk := z < 1. Therefore,

QBk (bk + ε|`)
QBk (bk|`)

=
qBk (bk + ε|`)
qBk (bk|`)

1 + δk
qBk (bk|`)

1−δk

1 + δk
qBk (bk+ε|`)

1−δk

→ α
1 + z

1 + zα
> 1.

Thus, if limβk(0) < v we can choose ε small enough such that the ratio of the profits at

bk + ε and bk, respectively, satisfies

lim
QBk (bk + ε|`)
QBk (bk|`)

v − bk − ε
v − bk

> 0. (19)

Hence, assuming limβk(0) < v implies a contradiction to the optimality of bk = βk (0).

Q.E.D.

We say that the law-of-one-price holds if the distribution of the realized transaction price

converges in distribution to a point for almost all types in the inflow.

Lemma 5 Suppose d` < s < dh. Then: Trading probabilities are competitive and the law-

of-one-price holds, with trade taking place at prices p` and ph. For almost all θB ∈
[
θB, θ̄

B
]
,

and θS ∈
[
θS , θ̄

S
]
the payoffs are

limEUS
(
θS |ω

)
=

min {s, dω}
s

(pω − c) ,

limEUB
(
θB|ω

)
=

min {s, dω}
dω

(v − pω) .

Proof. Consider ω = h.

Suppose limβk(1) > c. Then, the monotonicity of ρk and Lemma 1 imply that limQSk (θ|h) =

1 for all θ ∈
[
θS , θ̄

S
]
, as claimed. Suppose limβk(1) = c. We show that this implies a con-

tradiction. As in the proof of Lemma 1, βk(1) ≥ ρk (1), and so lim ρk (1) = c. But if

lim ρk (1) = limβk (1) = c, then the monotonicity of ρk and βk implies that given any ε, a

bid c + ε wins for sure when k is large enough. Thus, limV B
k (θ) = v − c for all θ. This

requires limQBk (θ|h) = 1 for almost all θ ∈
[
θB, θ̄

B
]
– in contradiction to mass balance given

dh > s: Namely, feasibility requires that

dω
∫

[0,1]
QBk (θ|ω)gB (θ|ω) dθ = s

∫
[0,1]

QSk (θ|ω)gS (θ|ω) dθ. (20)
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Finally, mass balance requires that lim dh
∫ θ̄
θB Q

B
k (θ|h) dθ = s. Thus, trading probabilities

are competitive if ω = h.

Take some θ ∈
[
θS , θ̄

S
]
with limQSk (θ|h) = 1 and let ph := limPSk (θ|h). Then, almost

all sellers trade at ph by limQSk (θ|h) = 1 for almost all θ ∈
[
θS , θ̄

S
]
and Lemma 4 (the

distribution of trading prices collapses). Thus, the law of one price holds if ω = h.

Consider ω = `.

Case 1: limDk(`)/Sk(`) > 0. Then, from Lemma 2, either limQBk (βk(0)|`) = 1 or limβk(0)

= v (or both). If limQBk (βk(0)|`) = 1, then by monotonicity of βk, limQBk (θ|`) = 1 for all

θ, so the law-of-one-price holds. If limβk(0) = v, then this and limDk(`)/Sk(`) > 0 implies

that sellers trade for sure when setting r = v − ε for any ε > 0, limQSk (v − ε|ω) = 1 for all

ε and ω = `, h. Thus, limV S
k (θ) = v − c for all θ. But this would require limQSk (θ) = 1 for

all θ, violating mass balance (20) given d` < s. Thus, trading probabilities are competitive

in case 1.

Case 2: limDk(`)/Sk(`) = 0. Then, limQBk (θ|`) = 1 for almost all θ. To see why, suppose

otherwise and suppose that a positive fraction φ of the entering cohort has belief θB ∈ [θB, θ̄
B

]

such that limQBk (θB|`) < 1. Then there exists a sequence tk with lim δtkk < 1 such that in a

steady state equilibrium there is a positive mass of buyers still on the market who entered

at least tk periods ago. Noting that lim δtkk < 1 is equivalent to lim tk(1− δk) > 0, we obtain

that limDk(`)(1 − δk) > 0. But Sk(`) (1− δk) ≤ s– Contradiction. Thus, limQBk (θ|`) = 1

for almost all θ in case 2. Therefore, trading probabilities are competitive in both possible

cases.

Take some θ ∈
[
θB, θ̄

]
with limQBk (θ|`) = 1 and let p` := limP `k (θ|`). Then, almost all

buyers trade at p` by Lemma 4. Thus, the law of one price holds if ω = `.

Characterization of Payoffs. Consider ω = h. From competitive trading probabilities and

the law of one price, sellers’expected payoffs for almost all θ ∈
[
θS , θ̄

]
are limEUS (θ|h) =(

ph − c
)
. Consider a buyer having type θ ∈

[
θB, θ̄

]
such that limQBk (θ|`) = 1. From Lemma

4 and limQBk (θ|`) = 1 for almost all θ ∈
[
θB, θ̄

]
, we have limEUB (θ|h) = limV B

k (1) for

almost all θ ∈
[
θB, θ̄

]
. Moreover, for almost all θ, the price conditional on trading is p`. Take

some θ with limEUB (θ|h) = limV B
k (1) and PBk (θ) → p` and let Q̄ = limQBk (θ|h). Then,

limV B
k (1) = Q̄

(
v − p`

)
. Thus, for almost all θ, we have Q̄ = limQBk (θ|h). Finally, from the

mass balance requirement, lim dh
∫ θ̄
θB Q

B
k (θ|h) dθ = s, and so we have limQBk (θ|h) = dh

s for

almost all θ, proving limEUB (θ|h) = dh

s

(
v − ph

)
.

An analogous argument establishes the same for ω = `. Together, this proves the charac-

terization of payoffs. Q.E.D.
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Proof of Proposition 4.

Proof of Proposition 4 for the case where d` < s < dh.

Lemma 5 proved the law of one price and that trading probabilities are competitive. It

remains to show that ph = v, with ph as defined in Lemma 5.

Suppose, limβk(1) = c. As argued before in the proof of Lemma 5, if limβk(1) = c then

limV B
k (θ) = v − c for all θ. This requires limQBk (θ|ω) = 1 for almost all θ ∈

[
θB, θ̄

]
and

ω = `, h. This violates mass balance (20) since s < dh. Thus, limβk(1) > c. Then, Lemma 1

implies that limQSk (1|h) = 1. So, Lemma 4 requires PSk (1|h) = PSk (θ|h) for all θ and from

Lemma 5, PSk (1|h) = ph. Thus, by Lemma 4, the probability that some buyer bids higher

than ph + ε must vanish for every ε. In addition, lim ρk (1) = ph from (8), PSk (1|h) → ph

and limQSk (1|h) = 1. Hence, a bid ph + ε wins with probability converging to one for every

ε > 0. Thus, limV B
k (1) ≥ v − ph. From Lemma 5 and its proof, limV B

k (1) ≤ dh

s

(
v − ph

)
.

Since dh

s < 1, this requires ph = v.

Proof of Proposition 4 for the case where s < d` < dh.

Consider ω = `. From d` > s, mass balance requires limDk(`)/Sk(`) > 0. Thus, from

Lemma 2, either limQBk (βk(0)|`) = 1 or limβk(0) = v (or both). Mass balance and s < d`

prohibits limQBk (βk(0)|`) = 1 (since then limQBk (θ|`) = 1 for all θ). Thus, limβk(0) = v.

As argued before in the proof of Lemma 5: This and limDk(`)/Sk(`) > 0 implies that sellers

trade for sure when setting r = v− ε for any ε > 0, that is, limQSk (v − ε|ω) = 1 for all ε and

ω = `, h. Thus, limV S
k (θ) = v− c for all θ. This implies limQSk (θ) = 1 (trading probabilities

are competitive), the law of one price with ph = p` = v, and the characterization of payoffs.

Proof of Proposition 4 for the case where s > dh > d`.

Suppose limβk(1) > c. Then, the monotonicity of ρk and Lemma 1 imply that limQSk (θ|h) =

1 for all θ ∈
[
θS , θ̄

]
. But this violates mass balance since s > dh.

Thus, limβk(1) = c. As argued before in the proof of Lemma 5, when limβk(1) = c

then limV B
k (θ) = v − c for all θ. This requires limQBk (θ|ω) = 1 for all θ ∈

[
θB, θ̄

]
and

ω = `, h. Thus trading probabilities are competitive. Of course, if limβk(1) = c, then

limPBk (θ|ω) = limPSk (θ|ω) = c (the law of one price holds). The characterization of payoffs

follows from ph = p` = c.

This completes the proof of Proposition 4. Q.E.D.

9.2 Proof of Proposition 5

Remark: The proof of the Proposition uses Lemma 3 (monotone updating on-path) and

some of the intermediate steps of its proof, stated in Section 9.3.
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Lemma 6 Take any sequence of equilibria that satisfies the refinement of monotone beliefs,

and suppose that lim θS0 (θk, bk) = 0 for some sequence {bk} with β−1
k (bk) ∈supp ΓBk and

bk = ρk(θk)→ b ∈ [c, v]. Then

limV S
k (0) + c ≥ b.

Proof. Suppose Lemma 6 does not hold, and take b such that b > limV S
k (0) + c, and

b = lim bk with bk = ρk(θk). Take any r ∈ (limV S
k (0) + c, b), and we show that the condition

for the refinement of monotone beliefs is violated for high enough k. By point i) of the

refinement for every ε > 0, lim θS0 (θk, [b− ε, bk]) = 0. By point ii) and the continuity of V S
k ,

then limV S
k (θS0 (θk, [b− ε, bk])) = limV S

k (0) > b− ε− c for all ε > 0, which implies our claim.

Q.E.D.

Proof of Proposition 5.

We need to show that p` = c, where p` is as defined in Proposition 4 for the case where

dh > s > d`.

Case 1: p` = limV S
k (0) + c.

By Proposition 4, and monotonicity of the bid functions and updating limQBk (x|`) = 1 for

all x ≥ θB. Therefore, Lemma 4 implies that for ω = `, almost all buyers trade in the limit

at the price p`. Hence, so do the sellers, meaning, limPSk (z|`) = p` for almost all z ∈ (0, 1).

By Proposition 4, limQSk (z|h) = 1, and thus Lemma 4 implies lim(WS
k (z|`) = limV S

k (0)

for all z ∈ (0, 1). So, the hypothesis implies lim(WS
k (z|`) = p` − c for almost all z. Since

limPSk (z|`) = p`, this implies that either p` = c or limQSk (z|`) = 1 for almost all z ∈ (0, 1)–

but limQSk (z|`) = 1 for almost all z ∈ (0, 1) cannot hold by feasibility if s > d`. Hence,

p` = c, which implies the claim.

Case 2: p` > limV S
k (0) + c.

Take any z ∈
(
θB, θ̄

B
)
. From Proposition 4, the monotonicity of βk, and Lemma 8

(monotone updating), limQBk (z|`) = 1 and limQBk (z|h) < 1. Take α ∈ (0, 1) and let tk be

the smallest number such that type z wins with a probability of at least α by period tk in

state `. With θk being the posterior after tk − 1 periods, type z wins with a probability of at

least α at a bid of at most bk = βk (θk) (by monotonicity of θ+).51 Such tk exists for k large

enough. From Proposition 4, lim bk = p`. Also, (δk)
tk → 1. Therefore, the probability that

z wins with a bid bk or lower in state h is vanishing to zero. Since z wins with a probability

51For example, with tk = 2,
qk (βk (z) |`) < α ≤

qk (βk (z) |`) + (1− qk (βk (z) |`)) (1− δk) qk
(
βk

(
θk+ (z)

)
|`
)
.
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not more than α before tk in state ` and with probability converging to zero in state h, we

have θk < 1. This follows from lim θk
1−θk = lim z

1−z
Pr(no win before tk−1|h)
Pr(no win before tk−1|`) <

θ̄
B

1−θ̄B
1

1−α .

Step 1: For all xk ≤ θ̄S and bk = βk (θk) (as defined above),

lim θS0 (xk, bk) = 0. (21)

From γk(1) = γBk (θk|ω)Dk(ω)
Sk(ω) e

−Dk(ω)

Sk(ω)
(1−ΓBk (θk|ω))

, we have

θS0 (xk, bk)

1− θS0 (xk, bk)
=

xk
1− xk

Dk(h)
Sk(h)

Dk(`)
Sk(`)

γBk (θk|h)

γBk (θk|`)
e
−Dk(h)

Sk(h)
(1−ΓBk (θk|h))

e
−Dk(`)

Sk(`)
(1−ΓBk (θk|`))

.

Note that the distribution of beliefs must satisfy

Dk(h)

Dk(`)

γBk (θk|h)

γBk (θk|`)
=

θk
1− θk

. (22)

This follows from the Bayesian consistency of the distribution of posterior beliefs.52 Also, by

construction Sk(`) ≤ s
1−δk and Sk(h) ≥ s hold. Therefore, upon substitution, we obtain

θS0 (xk, bk)

1− θS0 (xk, bk)
≤ xk

1− xk
θk

1− θk
1

1− δk
e
−Dk(h)

Sk(h)
(1−ΓBk (θk|h))

e
−Dk(`)

Sk(`)
(1−ΓBk (θk|`))

.

By assumption, xk ≤ θ̄S < 1, and we already argued lim θk < 1. Also, limDk(`)/Sk(`) = 0

by Lemma 2, and thus lim e
−Dk(`)

Sk(`)
(1−ΓBk (θk|`)) = 1. Therefore, it is suffi cient to prove that

lim
e
−Dk(h)

Sk(h)
(1−ΓBk (θk|h))

1− δk
= 0.

From (δk)
tk → 1 and limQBk (θ|h) < 1 for all θ ≤ θ̄, we have lim(1 − ΓBk (θk|h)) = 0.

Finally, by Lemma 5 it holds that lim Dk(h)(1−δk)
Sk(h) = z > 0. Therefore, lim e

−Dk(h)
Sk(h)

(1−ΓBk (θk|h))

1−δk =

lim e
− z

1−δk
1−δk = 0, and so (21) holds.

Step 2. For any ε and k large enough, ρk (θ) /∈ [V S
k (0) + c + ε, bk] for all θ ≤ θ̄

S (and

recall bk → p` > limV S
k (0) + c).

First, we show that for all b ∈ [limV S
k (0) + c+ ε, p`], β−1

k (b) ∈supp ΓBk for a large enough

k. Otherwise, there exists an interval (b, b) ⊂ [limV S
k (0) + c+ ε, p`] that is not in the limit of

the supports of the bid distributions but b is. Then for it to be optimal to bid close to b in

the limit, it must hold that b is in the limit of the supports of the reserve price distributions.

52We explicitly verify that steady-state distributions satisfy this condition in Lemma 11 in the online ap-
pendix for the case of full-trade equilibria.
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But then Lemma 6 implies that b ≤ limV S
k (0) + c, a contradiction. Second, suppose that for

some r ∈ [limV S
k (0) + c+ ε, bk] it holds that r is in the limiting support of the reserve price

distribution. Then again Lemma 6 yields a contradiction.

Step 3. Given any ε small enough and k large enough, bidding b′k = V S
k (0) + c + ε is

strictly more profitable for θk than bidding bk.

By the hypothesis of the case, lim b′k < lim bk = p`. In addition, the probability that there

is no other buyer converges to one when ω = `. Hence, given Step 2, conditional on ω = `,

bidding b′k strictly increases payoffs for θk since b
′
k wins with the same probability as bk in

the low state in the limit: lim
qBk (b′k|`)
qBk (bk|`)

= 1.

Next, observe that by Step 1 and the refinement of monotone beliefs lim θS0 (θk, [b
′
k, bk]) =

0. Therefore, conditional on winning against bids on [b′k, bk], the state is almost sure to be

low in the limit. But in the low state, it is more profitable to place bid b′k as we argued above,

and Step 3 is complete. Thus, we have reached a contradiction and so Case 2 cannot occur.

Since the claim holds in Case 1, this completes the proof of Proposition 5. Q.E.D.

9.3 Monotone Updating and Proof of Lemma 3

We prove monotonicity of certain posteriors for the case where dh > s > d`. We start the

analysis with the following result:

Lemma 7 If δ is large enough, then
ΓB

(1)
(θ|h)

ΓB
(1)

(θ|`) and
γB

(1)
(θ|h)

γB
(1)

(θ|`) are strictly increasing in θ for all

θ ≥ θB on the support of ΓB(1).

Proof. Recall that ΓB(1) (θ|ω) = e
−D(ω)
S(ω)

(1−ΓB(θ|ω)), and thus

γB(1) (θ|ω) =
D(ω)

S(ω)
γB (θ|ω) ΓB(1) (θ|ω) .

The likelihood ratio can be written as

γB(1) (θ|h)

γB(1) (θ|`)
=

D(h)
S(h) γ

B (θ|h) ΓB(1) (θ|h)

D(`)
S(`) γ

B (θ|`) ΓB(1) (θ|`)
.

From (22),
D(h)

D(`)

γB (θ|h)

γB (θ|`) =
θ

(1− θ) , (23)

and thus
γB(1) (θ|h)

γB(1) (θ|`)
=
S(`)

S(h)

θ

1− θ
ΓB(1) (θ|h)

ΓB(1) (θ|`)
. (24)
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Suppose that for all θ ∈ suppΓB it holds that S(`)
S(h)

θ
1−θ > 1. Then

γB
(1)

(θ|h)

γB
(1)

(θ|`) >
ΓB

(1)
(θ|h)

ΓB
(1)

(θ|`) , so

ΓB
(1)

(θ|h)

ΓB
(1)

(θ|`) is increasing in θ because(
ΓB(1) (θ|h)

ΓB(1) (θ|`)

)′
=
γB(1) (θ|h) ΓB(1) (θ|`)− γB(1) (θ|`) ΓB(1) (θ|h)(

ΓB(1) (θ|`)
)2

=
γB(1) (θ|`)
ΓB(1) (θ|`)

(
γB(1) (θ|h)

γB(1) (θ|`)
−

ΓB(1) (θ|h)

ΓB(1) (θ|`)

)
.

Moreover,
γB

(1)
(θ|h)

γB
(1)

(θ|`) =
D(h)
S(h)

θΓB
(1)

(θ|h)

D(`)
S(`)

(1−θ)ΓB
(1)

(θ|`)
is also increasing in θ.

Therefore, we only to need to establish that θ ∈ suppΓB implies S(`)
S(h)

θ
1−θ > 1 for δ large

enough. Let the per period trades have mass t(ω) for ω = `, h. Then S(ω) = s−t(ω)
1−δ in a

steady-state.53 By feasibility t(`) ≤ d`, and by the fact that the limit is competitive in the

high state we have that limSk(h)(1 − δk) = s − lim tk(h) = 0. Therefore, we obtain that

limSk(`)/Sk(h) =∞ and thus
ΓB

(1)
(θ|h)

ΓB
(1)

(θ|`) is increasing for all θ ≥ θ
B. Q.E.D.

Next, we establish Lemma 8. Recall that θB+(θ, b) is the posterior of a buyer who starts

with belief θ, and learns that the bid b did not win (either there was a higher bidder or the

seller had set a higher reserve price).

Lemma 8 Assume dh > s > d`. There exists a δ < 1 such that for all δ > δ the following

holds. Buyers update upward, that is

θB+(θ, b) > θ

for all b ∈ [β(θB), β(1)).

Proof. Let Fωb (x) = ΓB(1)(β
−1(x)|ω) denote the probability that the highest bid is less than

or equal to x in state ω. Similarly, let Fωr (x) = ΓS(ρ−1(x)|ω) denote the probability that the

reserve price set is less than or equal to x in state ω. Given previous results, it holds that

Fωb (x) = e
−D(ω)
S(ω)

(1−ΓB(β−1(x)|ω)). In the main text we show that Fωb (x) = ΓB(1)

(
β−1(x)|ω

)
and

Fωr (x) = ΓS
(
ρ−1(x)|ω

)
. By definition,

θB+(θ, b)

1− θB+(θ, b)
=

θ

1− θ
1− F hb (b)F hr (b)

1− F `b (b)F `r (b)
.

53The mass of sellers present in the next period is 1 + δ(S(w)− t(w)), which needs to be equal to S(w) to
reach a steady-state. Therefore, 1 + δ(S(w)− t(w)) = S(w) or S(w) = 1−t(w)

1−δ .
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Note, that Fωb (r) = ΓB(1)

(
β−1(r)|ω

)
and thus the fact that

ΓB
(1)

(θ|h)

ΓB
(1)

(θ|`) is strictly increasing in

θ for all θ ≥ θB by Lemma 7 implies that Fhb (r)

F `b (r)
is increasing in r for all r ≥ β(θB). By

construction, F
h
b (β(1))

F `b (β(1))
= 1 holds. These two observations imply that for all b ∈ [β(θB), β(1)),

it holds that F
h
b (b)

F `b (b)
< 1. Therefore, it is suffi cient to show that F

h
r (b)
F `r (b)

≤ 1. We show that F
h
r (b)
F `r (b)

is weakly increasing in b and we know that by construction Fhr (β(1))
F `r (β(1))

= 1, which concludes our

proof. The requirement that Fhr (b)
F `r (b)

is weakly increasing in b for all b ≥ β(θB) is equivalent

to ΓS(θ|h)
ΓS(θ|`) is increasing in θ for all θ ≥ θS . The analogue of (22) for the sellers implies that

γS(θ|h)
γS(θ|`) = S(`)

S(h)
θ

1−θ . Therefore,
γS(θ|h)
γS(θ|`) is strictly increasing in θ, which implies that

ΓS(θ|h)
ΓS(θ|`) is

increasing in θ as well.54 Q.E.D.

Another consequence of Lemma 7 is that updating is monotone for the sellers as well.

Formally, let θS+(θ, r) be the posterior of a seller who starts with belief θ, and learns that the

highest bid is less than r (including the event that there is no bidder present at all).

Lemma 9 Assume dh > s > d`. There exists δ < 1 such that for all δ > δ the following

holds. In every equilibrium, sellers update downward, that is

θS+(θ, r) < θ

for all r ∈ [c, v] and θ ∈ (0, 1). Moreover, a lower reserve price yields stronger updating, that

is, θS+(θ, r) is weakly increasing in r for all r ≥ β(θB), and if ΓB(1)(r
′|ω) > ΓB(1)(r|ω), then

θS+(θ, r′) > θS+(θ, r).

Proof. Recall that Fωb (x) = ΓB(1)(β
−1(x)|ω). Lemma 8 implies that since buyers update

upwards for any θ ≥ θB, and strategies are monotone thus the buyers never place any bid lower
than β(θB) in equilibrium. Therefore, for all r < β(θB) it holds that θS+(θ, r) = θS+(θ, β(θB))

and thus it is suffi cient to prove θS+(θ, r) < θ for all r ≥ β(θB). By definition,

θS+(θ, r)

1− θS+(θ, r)
=

θ

1− θ
F hb (r)

F `b (r)
. (25)

In the proof of Lemma 8, we showed that Fhb (r)

F `b (r)
< 1 for all r ∈ [β(θB), β(1)), which then

implies the first claim via (25). The second result is a direct consequence of the fact that
Fhb (r)

F `b (r)
is increasing in r by 7. Q.E.D.

54Note, that

lim
θ→0

γS (θ|h)

γS (θ|`) = lim
θ→0

ΓS (θ|h)

ΓS (θ|`) = 0,

and thus the fact that γS(θ|h)

γS(θ|`) is increasing in θ implies that
ΓS(θ|h)

ΓS(θ|`) is also increasing in θ.
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Finally, we prove Lemma 3.

Proof of Lemma 3.

Take any b′ > b ≥ c such that β−1 (b′) and β−1 (b) are in the support of ΓB. We want to

show that θS0 (θ, b) > θS0 (θ, b′). Let θB and θ̃
B
be such that b = β(θB) and b′ = β(θ̃

B
). Notice

that θ̃
B
> θB ≥ θB by the bids being in the support of equilibrium bids as discussed after

the proof of the previous Lemma. Bayes rule implies that

θS0 (θ, b)

1− θS0 (θ, b)
=

θ

1− θ
γB(1)

(
θB|h

)
γB(1)

(
θB|`

) < θ

1− θ
γB(1)

(
θ̃
B|h
)

γB(1)

(
θ̃
B|`
) ,

which establishes the first result upon using Lemma 7.

The posterior if no bid is received is θS0 (θ,∅). We want to show that for all b ≥ 0 such

that β−1 (b) ∈ supp(ΓB), θS0 (θ, b) ≥ θS0 (θ,∅). To establish this, it is suffi cient to prove

θS0 (θ, β(θB)) ≥ θS0 (θ,∅), which boils down to

γB(1)

(
θB|h

)
γB(1)

(
θB|`

) ≥ ΓB(1)

(
θB|h

)
ΓB(1)

(
θB|`

) (26)

upon noting that θS0 (θ,∅) = θ
1−θ

ΓB
(1)(θ

B |h)
ΓB

(1)(θ
B |`)

because the probability of not receiving any bid

in state ω is ΓB(1)

(
θB|ω

)
. Using (24), (26) can be rewritten as

S(`)

S(h)

θB

1− θB
≥ 1,

which holds for a large enough δ as we argued in the proof of Lemma 7. Q.E.D.
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